Low-Rank Tensor Based Proximity Learning for Multi-View Clustering

被引:42
|
作者
Chen, Man-Sheng [1 ,2 ,3 ]
Wang, Chang-Dong [1 ,2 ,3 ]
Lai, Jian-Huang [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China
[2] Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Minist Educ, Key Lab Machine Intelligence & Adv Comp, Beijing 100816, Peoples R China
关键词
Tensors; Correlation; Clustering methods; Kernel; Data structures; Sparse matrices; Semantics; Multi-view clustering; low-rank tensor representation; consensus indicator; adaptive confidences; GRAPH;
D O I
10.1109/TKDE.2022.3151861
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph-oriented multi-view clustering methods have achieved impressive performances by employing relationships and complex structures hidden in multi-view data. However, most of them still suffer from the following two common problems. (1) They target at studying a common representation or pairwise correlations between views, neglecting the comprehensiveness and deeper higher-order correlations among multiple views. (2) The prior knowledge of view-specific representation can not be taken into account to obtain the consensus indicator graph in a unified graph construction and clustering framework. To deal with these problems, we propose a novel Low-rank Tensor Based Proximity Learning (LTBPL) approach for multi-view clustering, where multiple low-rank probability affinity matrices and consensus indicator graph reflecting the final performances are jointly studied in a unified framework. Specifically, multiple affinity representations are stacked in a low-rank constrained tensor to recover their comprehensiveness and higher-order correlations. Meanwhile, view-specific representation carrying different adaptive confidences is jointly linked with the consensus indicator graph. Extensive experiments on nine real-world datasets indicate the superiority of LTBPL compared with the state-of-the-art methods.
引用
收藏
页码:5076 / 5090
页数:15
相关论文
共 50 条
  • [31] Multi-view Clustering with Latent Low-rank Proxy Graph Learning
    Jian Dai
    Zhenwen Ren
    Yunzhi Luo
    Hong Song
    Jian Yang
    [J]. Cognitive Computation, 2021, 13 : 1049 - 1060
  • [32] Multi-view Clustering with Latent Low-rank Proxy Graph Learning
    Dai, Jian
    Ren, Zhenwen
    Luo, Yunzhi
    Song, Hong
    Yang, Jian
    [J]. COGNITIVE COMPUTATION, 2021, 13 (04) : 1049 - 1060
  • [33] Tensor Low-Rank Graph Embedding and Learning for One-Step Incomplete Multi-View Clustering
    Wan, Minghua
    Zhu, Jingyu
    Sun, Chengli
    Yang, Zhangjing
    Yin, Jun
    Yang, Guowei
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9763 - 9775
  • [34] Facilitated low-rank multi-view subspace clustering
    Zhang, Guang-Yu
    Huang, Dong
    Wang, Chang-Dong
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 260
  • [35] Multiple kernel-based anchor graph coupled low-rank tensor learning for incomplete multi-view clustering
    Senhong Wang
    Jiangzhong Cao
    Fangyuan Lei
    Jianjian Jiang
    Qingyun Dai
    Bingo Wing-Kuen Ling
    [J]. Applied Intelligence, 2023, 53 : 3687 - 3712
  • [36] Robust multi-view low-rank embedding clustering
    Jian Dai
    Hong Song
    Yunzhi Luo
    Zhenwen Ren
    Jian Yang
    [J]. Neural Computing and Applications, 2023, 35 : 7877 - 7890
  • [37] Robust multi-view low-rank embedding clustering
    Dai, Jian
    Song, Hong
    Luo, Yunzhi
    Ren, Zhenwen
    Yang, Jian
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (10): : 7877 - 7890
  • [38] Deep Low-Rank Multi-View Subspace Clustering
    Yan, Jintao
    Li, Zhongyu
    Tang, Qifan
    Zhou, Zhihao
    [J]. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2021, 55 (11): : 125 - 135
  • [39] Multiple kernel-based anchor graph coupled low-rank tensor learning for incomplete multi-view clustering
    Wang, Senhong
    Cao, Jiangzhong
    Lei, Fangyuan
    Jiang, Jianjian
    Dai, Qingyun
    Ling, Bingo Wing-Kuen
    [J]. APPLIED INTELLIGENCE, 2023, 53 (04) : 3687 - 3712
  • [40] Multi-view low-rank sparse subspace clustering
    Brbic, Maria
    Kopriva, Ivica
    [J]. PATTERN RECOGNITION, 2018, 73 : 247 - 258