Locality of the windowed local density of states

被引:2
|
作者
Loring, Terry A. [1 ]
Lu, Jianfeng [2 ,3 ,4 ]
Watson, Alexander B. [5 ]
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[2] Duke Univ, Dept Math, Durham, NC 27708 USA
[3] Duke Univ, Dept Chem, Durham, NC 27708 USA
[4] Duke Univ, Dept Phys, Durham, NC 27708 USA
[5] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
34; 35; 46; 47; 65; 81; ELECTRONIC-STRUCTURE;
D O I
10.1007/s00211-024-01400-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a generalization of local density of states which is "windowed" with respect to position and energy, called the windowed local density of states (wLDOS). This definition generalizes the usual LDOS in the sense that the usual LDOS is recovered in the limit where the position window captures individual sites and the energy window is a delta distribution. We prove that the wLDOS is local in the sense that it can be computed up to arbitrarily small error using spatial truncations of the system Hamiltonian. Using this result we prove that the wLDOS is well-defined and computable for infinite systems satisfying some natural assumptions. We finally present numerical computations of the wLDOS at the edge and in the bulk of a "Fibonacci SSH model", a one-dimensional non-periodic model with topological edge states.
引用
收藏
页码:741 / 775
页数:35
相关论文
共 50 条
  • [41] The density of states of a local almost periodic operator in Rν
    Krupa, A
    STUDIA MATHEMATICA, 2003, 158 (03) : 227 - 237
  • [42] Local density of states probed by single electron tunneling
    Könemann, J
    König, P
    Schmidt, T
    McCann, E
    Fal'ko, VI
    Haug, RJ
    Electronic Correlations: From Meso- to Nano-Physics, 2001, : 283 - 286
  • [43] Electrodynamic dip in the local density of states of a metallic wire
    Pierre, F
    Pothier, H
    Joyez, P
    Birge, NO
    Esteve, D
    Devoret, MH
    PHYSICAL REVIEW LETTERS, 2001, 86 (08) : 1590 - 1593
  • [44] LOCAL DENSITY OF ELECTRON STATES IN A SEMICONDUCTOR WITH DEFECTS.
    Bazhenov, V.K.
    Doicho, I.K.
    Petukhov, A.G.
    Soviet physics. Semiconductors, 1980, 14 (01): : 3 - 6
  • [45] LOCAL DENSITY OF STATES FOR A RELAXED SI(111) SURFACE
    SCHLUTER, M
    COHEN, ML
    PHYSICS LETTERS A, 1976, 56 (05) : 419 - 420
  • [46] Spectroscopy of local density of states fluctuations in a disordered conductor
    Schmidt, T
    Haug, RJ
    Falko, VI
    VonKlitzing, K
    Forster, A
    Luth, H
    EUROPHYSICS LETTERS, 1996, 36 (01): : 61 - 66
  • [47] Oscillations of local density of states in defective carbon nanotubes
    Yang, HT
    Chen, JW
    Yang, LF
    Dong, JM
    PHYSICAL REVIEW B, 2005, 71 (08)
  • [48] Local density of states near spatially dispersive nanospheres
    Schmidt, Robin
    Scheel, Stefan
    PHYSICAL REVIEW A, 2016, 93 (03)
  • [49] Local density of states of vortex state in mesoscopic superconductors
    Hu, Xing-Hua
    Wu, Bao-Jun
    Zhang, Xiao-Fei
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2011, 471 (5-6): : 129 - 132
  • [50] Imaging signatures of the local density of states in an electronic cavity
    Gold, Carolin
    Bram, Beat A.
    Ferguson, Michael S.
    Krahenmann, Tobias
    Hofmann, Andrea
    Steinacher, Richard
    Fratus, Keith R.
    Reichl, Christian
    Wegscheider, Werner
    Weinmann, Dietmar
    Ensslin, Klaus
    Ihn, Thomas
    PHYSICAL REVIEW RESEARCH, 2021, 3 (03):