NiCo2O4 Nanoneedle-Coated 3D Reticulated Vitreous Porous Carbon Foam for High-Performance All-Solid-State Supercapacitors

被引:2
|
作者
Yadav, Kaumudi [1 ]
Ovhal, Manoj Mayaji [2 ]
Parmar, Saurabh [3 ]
Gaikwad, Nishant [1 ]
Datar, Suwarna [3 ]
Kang, Jae-Wook [2 ]
Patro, T. Umasankar [1 ]
机构
[1] Def Inst Adv Technol DIAT DU, Dept Met & Mat Engn, Pune 411025, India
[2] Jeonbuk Natl Univ, Dept Flexible & Printable Elect, Jeonju 54896, South Korea
[3] Def Inst Adv Technol DIAT, Dept Appl Phys, Pune 411025, India
关键词
hydrothermal method; binary metal oxides; nanoneedlesstructure; surface area; charge transport; NANOSHEETS; ELECTRODE; NANOPARTICLES; NANOTUBES; ARRAYS; FILMS; NANOSTRUCTURES; MICROSPHERES; NANOWIRES; NI;
D O I
10.1021/acsanm.3c05812
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A binder-free, electrically conducting nickel cobalt oxide (NiCo2O4)-reticulated vitreous carbon (RVC) foam (NiCo2O4@RVC) electrode was prepared by template carbonization of open-cell polyurethane foam followed by the hydrothermal growth of NiCo2O4 nanoneedles, leading to the formation of a hierarchical porous electrode. The growth of NiCo2O4 nanoneedles (length and diameter) on RVC foam was found to depend on hydrothermal coating time, which varied between 6 and 12 h. However, optimally grown NiCo2O4 nanoneedles for 8 h on an RVC foam with an average diameter of 77(+/- 9) nm and length of similar to 2 mu m exhibited the lowest charge-transfer resistance, resulting in the areal capacitance (C-a) of similar to 2.45 F/cm(2) at a scan rate of 5 mV/s. A symmetric supercapacitor (SC) device exhibited a maximum C-a of 1.22 F/cm(2) at a current density of 1 mA/cm(2) and an energy density of 2.51 W h/kg at a power density of 30 W/kg. The SCs showed a capacitance retention of similar to 97% after 10,000 galvanostatic charge/discharge (GCD) cycles, apparently due to a highly stable NiCo2O4 structure on the RVC network structure, which was ascertained by various characterization techniques after the GCD cycles. Further, the SC module, comprising three devices in series, successfully lights up an LED, demonstrating the energy storage capability of these electrodes in real applications. Owing to its excellent electrochemical performance, the NiCo2O4@RVC electrode offers a low-cost and efficient alternative material in energy storage applications.
引用
收藏
页码:2312 / 2324
页数:13
相关论文
共 50 条
  • [1] NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors
    Wang, Qiufan
    Wang, Xianfu
    Liu, Bin
    Yu, Gang
    Hou, Xiaojuan
    Chen, Di
    Shen, Guozhen
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (07) : 2468 - 2473
  • [2] Construction of NiCo2O4 nanorods into 3D porous ultrathin carbon networks for high-performance asymmetric supercapacitors
    Dong, Kangze
    Wang, Zhiyuan
    Sun, Meizhu
    Wang, Dan
    Luo, Shaohua
    Liu, Yanguo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 783 : 1 - 9
  • [3] Hierarchical three-dimensional NiCo2O4 nanoneedle arrays supported on Ni foam for high-performance supercapacitors
    Wu, Jian
    Mi, Rui
    Li, Shaomin
    Guo, Pan
    Mei, Jun
    Liu, Hao
    Lau, Woon-Ming
    Liu, Li-Min
    RSC ADVANCES, 2015, 5 (32): : 25304 - 25311
  • [4] Controllable synthesis of porous NiCo2O4/NiO/Co3O4 nanoflowers for asymmetric all-solid-state supercapacitors
    Feng, Xuansheng
    Huang, Ying
    Li, Chao
    Chen, Xuefang
    Zhou, Suhua
    Gao, Xiaogang
    Chen, Chen
    CHEMICAL ENGINEERING JOURNAL, 2019, 368 : 51 - 60
  • [5] NiCo2O4/C Core-Shell Nanoneedles on Ni Foam for All-Solid-State Asymmetric Supercapacitors
    Li, Yaoyin
    Wang, Qiyuan
    Shao, Jian
    Li, Kang
    Zhao, Weiwei
    CHEMISTRYSELECT, 2020, 5 (19): : 5501 - 5506
  • [6] Rational synthesis of porous CuO/Cu2O/NiCo2O4 3D composites for high-performance supercapacitors
    Huimin Yin
    Xiaoxiang Yang
    Chang Li
    Yan Li
    Hongliang Cao
    Xin Chen
    Lingling Wang
    Journal of Materials Research, 2021, 36 : 387 - 396
  • [7] Rational synthesis of porous CuO/Cu2O/NiCo2O4 3D composites for high-performance supercapacitors
    Yin, Huimin
    Yang, Xiaoxiang
    Li, Chang
    Li, Yan
    Cao, Hongliang
    Chen, Xin
    Wang, Lingling
    JOURNAL OF MATERIALS RESEARCH, 2021, 36 (02) : 387 - 396
  • [8] Construction of 3D hierarchical porous NiCo2O4/graphene hydrogel/Ni foam electrode for high-performance supercapacitor
    Feng, Hanfang
    Gao, Shuya
    Shi, Jun
    Zhang, Li
    Peng, Zhenmeng
    Cao, Shaokui
    ELECTROCHIMICA ACTA, 2019, 299 : 116 - 124
  • [9] Ultrathin Porous NiCo2O4 Nanosheet Arrays on Flexible Carbon Fabric for High-Performance Supercapacitors
    Du, Jun
    Zhou, Gang
    Zhang, Haiming
    Cheng, Chao
    Ma, Jianmin
    Wei, Weifeng
    Chen, Libao
    Wang, Taihong
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (15) : 7405 - 7409
  • [10] 3D hierarchical NiCo2O4@WO3/Cu2S heterostructures and biomass-derived carbon electrodes for high-performance all-solid-state supercapacitors
    Prabu, Samikannu
    Chiang, Kung-Yuh
    Sreekanth, Tvm
    Pallavolu, Mohan Reddy
    JOURNAL OF POWER SOURCES, 2025, 630