NiCo2O4 Nanoneedle-Coated 3D Reticulated Vitreous Porous Carbon Foam for High-Performance All-Solid-State Supercapacitors

被引:2
|
作者
Yadav, Kaumudi [1 ]
Ovhal, Manoj Mayaji [2 ]
Parmar, Saurabh [3 ]
Gaikwad, Nishant [1 ]
Datar, Suwarna [3 ]
Kang, Jae-Wook [2 ]
Patro, T. Umasankar [1 ]
机构
[1] Def Inst Adv Technol DIAT DU, Dept Met & Mat Engn, Pune 411025, India
[2] Jeonbuk Natl Univ, Dept Flexible & Printable Elect, Jeonju 54896, South Korea
[3] Def Inst Adv Technol DIAT, Dept Appl Phys, Pune 411025, India
关键词
hydrothermal method; binary metal oxides; nanoneedlesstructure; surface area; charge transport; NANOSHEETS; ELECTRODE; NANOPARTICLES; NANOTUBES; ARRAYS; FILMS; NANOSTRUCTURES; MICROSPHERES; NANOWIRES; NI;
D O I
10.1021/acsanm.3c05812
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A binder-free, electrically conducting nickel cobalt oxide (NiCo2O4)-reticulated vitreous carbon (RVC) foam (NiCo2O4@RVC) electrode was prepared by template carbonization of open-cell polyurethane foam followed by the hydrothermal growth of NiCo2O4 nanoneedles, leading to the formation of a hierarchical porous electrode. The growth of NiCo2O4 nanoneedles (length and diameter) on RVC foam was found to depend on hydrothermal coating time, which varied between 6 and 12 h. However, optimally grown NiCo2O4 nanoneedles for 8 h on an RVC foam with an average diameter of 77(+/- 9) nm and length of similar to 2 mu m exhibited the lowest charge-transfer resistance, resulting in the areal capacitance (C-a) of similar to 2.45 F/cm(2) at a scan rate of 5 mV/s. A symmetric supercapacitor (SC) device exhibited a maximum C-a of 1.22 F/cm(2) at a current density of 1 mA/cm(2) and an energy density of 2.51 W h/kg at a power density of 30 W/kg. The SCs showed a capacitance retention of similar to 97% after 10,000 galvanostatic charge/discharge (GCD) cycles, apparently due to a highly stable NiCo2O4 structure on the RVC network structure, which was ascertained by various characterization techniques after the GCD cycles. Further, the SC module, comprising three devices in series, successfully lights up an LED, demonstrating the energy storage capability of these electrodes in real applications. Owing to its excellent electrochemical performance, the NiCo2O4@RVC electrode offers a low-cost and efficient alternative material in energy storage applications.
引用
收藏
页码:2312 / 2324
页数:13
相关论文
共 50 条
  • [31] 3D porous graphene/NiCo2O4 hybrid film as an advanced electrode for supercapacitors
    Zhou, You
    Huang, Zhengyong
    Liao, Huijun
    Li, Jian
    Wang, Hanxiang
    Wang, Yu
    APPLIED SURFACE SCIENCE, 2020, 534 (534)
  • [32] Three-Dimensionally Porous NiCo2O4 Nanoneedle Arrays for High Performance Supercapacitor
    Wang, Chenggang
    Zhou, E.
    Deng, Xiaolong
    Shao, Minghui
    Huang, Jinzhao
    Wei, Xianqi
    Xu, Xijin
    SCIENCE OF ADVANCED MATERIALS, 2016, 8 (06) : 1298 - 1304
  • [33] Chitosan-derived carbon and NiCo2O4 aerogel composite for high-performance supercapacitors
    Quan, Le Hong
    Thuy, Ung Thi Dieu
    Chi, Nguyen Van
    Hoa, Nguyen Van
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 282
  • [34] NiCo2O4-decorated porous carbon nanosheets for high-performance supercapacitors
    Veeramani, Vediyappan
    Madhu, Rajesh
    Chen, Shen-Ming
    Sivakumar, Mani
    Hung, Chin-Te
    Miyamoto, Nobuyoshi
    Liu, Shang-Bin
    ELECTROCHIMICA ACTA, 2017, 247 : 288 - 295
  • [35] 3D hierarchical NiCo2O4@Co3S4@MnS@PPy core-sheath nanowire arrays as high-performance electrode for all-solid-state asymmetric supercapacitors
    He, Lizhong
    Guo, Zengpeng
    Lashari, Najeeb ur Rehman
    Wang, Gexi
    Li, Mengbin
    JOURNAL OF ENERGY STORAGE, 2024, 79
  • [36] 3D direct ink writing fabrication of high-performance all-solid-state micro-supercapacitors
    Ovhal, Manoj Mayaji
    Kumar, Neteesh
    Kang, Jae-Wook
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2020, 705 (01) : 105 - 111
  • [37] High-performance all-solid-state yarn supercapacitors based on porous graphene ribbons
    Huang, Guoji
    Hou, Chengyi
    Shao, Yuanlong
    Zhu, Bingjie
    Jia, Baoping
    Wang, Hongzhi
    Zhang, Qinghong
    Li, Yaogang
    NANO ENERGY, 2015, 12 : 26 - 32
  • [38] Preparation of cellulose-based carbon nanofibers/NiCo2S4 composites for high-performance all-solid-state symmetric supercapacitors
    Yuan, Chunshun
    Zhang, Mengyun
    Ni, Xuepeng
    Li, Kunming
    Liu, Chenglin
    Chen, Huifang
    Ju, Anqi
    JOURNAL OF ENERGY STORAGE, 2022, 47
  • [39] Role of deposition time on synthesis of high-performance NiCo2O4 supercapacitors
    Ratnamala B. Waghmode
    Appasaheb P. Torane
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 9575 - 9583
  • [40] Role of deposition time on synthesis of high-performance NiCo2O4 supercapacitors
    Waghmode, Ratnamala B.
    Torane, Appasaheb P.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (13) : 9575 - 9583