Performance comparison of deep learning architectures for surgical instrument image removal in gastrointestinal endoscopic imaging

被引:0
|
作者
Watanabe, Taira [1 ]
Tanioka, Kensuke [1 ]
Hiwa, Satoru [1 ]
Hiroyasu, Tomoyuki [2 ]
机构
[1] Doshisha Univ, Dept Biomed Sci & Informat, Kyoto, Japan
[2] Doshisha Univ, Grad Sch Life & Med Sci, Kyoto, Japan
关键词
Deep learning; Convolutional neural networks; Gastrointestinal endoscopic images; Semantic segmentation; Artifact removal method;
D O I
10.1007/s10015-022-00838-8
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Endoscopic images typically contain several artifacts. The artifacts significantly impact image analysis result in computer-aided diagnosis. Convolutional neural networks (CNNs), a type of deep learning, can remove such artifacts. Various architectures have been proposed for the CNNs, and the accuracy of artifact removal varies depending on the choice of architecture. Therefore, it is necessary to determine the artifact removal accuracy, depending on the selected architecture. In this study, we focus on endoscopic surgical instruments as artifacts, and determine and discuss the artifact removal accuracy using seven different CNN architectures.
引用
收藏
页码:307 / 313
页数:7
相关论文
共 50 条
  • [31] Comparison of the Effect of Instrument Type on Transanal Endoscopic Surgery Learning Curves
    Teitelbaum, Ezra N.
    Arafat, Fahd O.
    Boller, Anne-Marie
    SURGICAL LAPAROSCOPY ENDOSCOPY & PERCUTANEOUS TECHNIQUES, 2016, 26 (04): : 304 - 307
  • [32] Comparative performance of deep learning architectures in classification of diabetic retinopathy
    Krishnan, S. Hari
    Vishwa, Charen
    Suchetha, M.
    Raman, Akshay
    Raman, Rajiv
    Sehastrajit, S.
    Dhas, D. Edwin
    INTERNATIONAL JOURNAL OF AD HOC AND UBIQUITOUS COMPUTING, 2023, 44 (01) : 23 - 35
  • [33] Image Reconstruction in Surgical Field Using Deep Learning
    Divya, S.
    Padmapriya, K.
    Ezhumalai, P.
    REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, 2021, 11 (02): : 1489 - 1496
  • [34] AI in Endoscopic Gastrointestinal Diagnosis: A Systematic Review of Deep Learning and Machine Learning Techniques
    Lewis, Jovita Relasha
    Pathan, Sameena
    Kumar, Preetham
    Dias, Cifha Crecil
    IEEE ACCESS, 2024, 12 : 163764 - 163786
  • [35] Vitreoretinal Surgical Instrument Tracking in Three Dimensions Using Deep Learning
    Baldi, Pierre F.
    Abdelkarim, Sherif
    Liu, Junze
    To, Josiah K.
    Ibarra, Marialejandra Diaz
    Browne, Andrew W.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2023, 12 (01):
  • [36] Deep Learning for Instrument Detection and Assessment of Operative Skill in Surgical Videos
    Lam, Kyle
    Lo, Frank P-W
    An, Yujian
    Darzi, Ara
    Kinross, James M.
    Purkayastha, Sanjay
    Lo, Benny
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2022, 4 (04): : 1068 - 1071
  • [37] A novel solution of deep learning for endoscopic ultrasound image segmentation: enhanced computer aided diagnosis of gastrointestinal stromal tumor
    Sanira Tuladhar
    Abeer Alsadoon
    P. W. C. Prasad
    Akbas Ezaldeen Ali
    Ahmad Alrubaie
    Multimedia Tools and Applications, 2022, 81 : 23845 - 23865
  • [38] A novel solution of deep learning for endoscopic ultrasound image segmentation: enhanced computer aided diagnosis of gastrointestinal stromal tumor
    Tuladhar, Sanira
    Alsadoon, Abeer
    Prasad, P. W. C.
    Ali, Akbas Ezaldeen
    Alrubaie, Ahmad
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (17) : 23845 - 23865
  • [39] Deep Learning Realizes Photoacoustic Imaging Artifact Removal
    He, Ruonan
    Chen, Yi
    Jiang, Yufei
    Lei, Yuyang
    Yan, Shengxian
    Zhang, Jing
    Cao, Hui
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [40] Colorectal endoscopic image enhancement via unsupervised deep learning
    Yue, Guanghui
    Gao, Jie
    Duan, Lvyin
    Du, Jingfeng
    Yan, Weiqing
    Wang, Shuigen
    Wang, Tianfu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (40) : 88363 - 88385