Performance comparison of deep learning architectures for surgical instrument image removal in gastrointestinal endoscopic imaging

被引:0
|
作者
Watanabe, Taira [1 ]
Tanioka, Kensuke [1 ]
Hiwa, Satoru [1 ]
Hiroyasu, Tomoyuki [2 ]
机构
[1] Doshisha Univ, Dept Biomed Sci & Informat, Kyoto, Japan
[2] Doshisha Univ, Grad Sch Life & Med Sci, Kyoto, Japan
关键词
Deep learning; Convolutional neural networks; Gastrointestinal endoscopic images; Semantic segmentation; Artifact removal method;
D O I
10.1007/s10015-022-00838-8
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Endoscopic images typically contain several artifacts. The artifacts significantly impact image analysis result in computer-aided diagnosis. Convolutional neural networks (CNNs), a type of deep learning, can remove such artifacts. Various architectures have been proposed for the CNNs, and the accuracy of artifact removal varies depending on the choice of architecture. Therefore, it is necessary to determine the artifact removal accuracy, depending on the selected architecture. In this study, we focus on endoscopic surgical instruments as artifacts, and determine and discuss the artifact removal accuracy using seven different CNN architectures.
引用
收藏
页码:307 / 313
页数:7
相关论文
共 50 条
  • [21] Endoscopic Image Analysis for Gastrointestinal Tract Disease Diagnosis Using Nature Inspired Algorithm With Deep Learning Approach
    Alruban, Abdulrahman
    Alabdulkreem, Eatedal
    Eltahir, Majdy M.
    Alharbi, Abdullah R.
    Issaoui, Imene
    Sayed, Ahmed
    IEEE ACCESS, 2023, 11 : 130022 - 130030
  • [22] Endoscopic and Surgical Removal of Gastrointestinal Foreign Bodies in Dogs: An Analysis of 72 Cases
    Di Palma, Cristina
    Pasolini, Maria Pia
    Navas, Luigi
    Campanile, Andrea
    Lamagna, Francesco
    Fatone, Gerardo
    Micieli, Fabiana
    Esposito, Ciro
    Donnarumma, Daniela
    Uccello, Valeria
    Lamagna, Barbara
    ANIMALS, 2022, 12 (11):
  • [23] Infrasound threat classification: A statistical comparison of deep learning architectures
    Solomon, Mitchell L.
    Bryan, Kaylen J.
    Smith, Kaleb E.
    Clauter, Dean A.
    Smith, Anthony O.
    Peter, Adrian M.
    CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XIX, 2018, 10629
  • [24] A Comparison of Deep Learning Architectures for Optical Galaxy Morphology Classification
    Fielding, Ezra
    Nyirenda, Clement N.
    Vaccari, Mattia
    INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 1360 - 1364
  • [25] Comparison of deep learning architectures for colon cancer mutation detection
    Heckenauer, Robin
    Weber, Jonathan
    Wemmert, Cedric
    Truntzer, Caroline
    Derangere, Valentin
    Ghiringhelli, Francois
    Hassenforder, Michel
    Muller, Pierre -Alain
    Forestier, Germain
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 360 - 365
  • [26] Comparison of Two Different Deep Learning Architectures on Breast Cancer
    Yilmaz, Feyza
    Kose, Onur
    Demir, Ahmet
    2019 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2019, : 521 - 524
  • [27] Deep learning for surgical phase recognition using endoscopic videos
    Annetje C. P. Guédon
    Senna E. P. Meij
    Karim N. M. M. H. Osman
    Helena A. Kloosterman
    Karlijn J. van Stralen
    Matthijs C. M. Grimbergen
    Quirijn A. J. Eijsbouts
    John J. van den Dobbelsteen
    Andru P. Twinanda
    Surgical Endoscopy, 2021, 35 : 6150 - 6157
  • [28] Deep learning for surgical phase recognition using endoscopic videos
    Guedon, Annetje C. P.
    Meij, Senna E. P.
    Osman, Karim N. M. M. H.
    Kloosterman, Helena A.
    van Stralen, Karlijn J.
    Grimbergen, Matthijs C. M.
    Eijsbouts, Quirijn A. J.
    van den Dobbelsteen, John J.
    Twinanda, Andru P.
    SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2021, 35 (11): : 6150 - 6157
  • [29] Evaluation of Deep Learning Architectures for Complex Immunofluorescence Nuclear Image Segmentation
    Kromp, Florian
    Fischer, Lukas
    Bozsaky, Eva
    Ambros, Inge M.
    Doerr, Wolfgang
    Beiske, Klaus
    Ambros, Peter F.
    Hanbury, Allan
    Taschner-Mandl, Sabine
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (07) : 1934 - 1949
  • [30] Deep Learning Approaches Based on Transformer Architectures for Image Captioning Tasks
    Castro, Roberto
    Pineda, Israel
    Lim, Wansu
    Morocho-Cayamcela, Manuel Eugenio
    IEEE ACCESS, 2022, 10 : 33679 - 33694