On chromatic number and clique number in k-step Hamiltonian graphs

被引:0
|
作者
Aziz, Noor A'lawiah Abd [1 ]
Rad, Nader Jafari [2 ]
Kamarulhaili, Hailiza [1 ]
Hasni, Roslan [3 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
[2] Shahed Univ, Dept Math, Tehran, Iran
[3] Univ Malaysia Terengganu, Fac Ocean Engn Technol & Informat, Kuala Nerus 21030, Terengganu, Malaysia
关键词
Hamiltonian graph; k-step Hamiltonian graph; chromatic number; clique number; UPPER-BOUNDS;
D O I
10.22049/CCO.2022.27970.1407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G of order n is called k-step Hamiltonian for k > 1 if we can label the vertices of G as v1, v2, . . . , vn such that d(vn, v1) = d(vi, vi+1) = k for i = 1, 2, . . . , n-1. The (vertex) chromatic number of a graph G is the minimum number of colors needed to color the vertices of G so that no pair of adjacent vertices receive the same color. The clique number of G is the maximum cardinality of a set of pairwise adjacent vertices in G. In this paper, we study the chromatic number and the clique number in k-step Hamiltonian graphs for k > 2. We present upper bounds for the chromatic number in k-step Hamiltonian graphs and give characterizations of graphs achieving the equality of the bounds. We also present an upper bound for the clique number in k-step Hamiltonian graphs and characterize graphs achieving equality of the bound.
引用
收藏
页码:37 / 49
页数:13
相关论文
共 50 条
  • [21] GRAPHS WHOSE CIRCULAR CLIQUE NUMBER EQUAL THE CLIQUE NUMBER
    XU Baogang ZHOU Xinghe School of Mathematics Computer Science Nanjing Normal University Ninghai Road Nanjing China
    Journal of Systems Science and Complexity, 2005, (03) : 340 - 346
  • [22] GRAPHS WHOSE CIRCULAR CLIQUE NUMBER EQUAL THE CLIQUE NUMBER
    XU Baogang ZHOU Xinghe School of Mathematics & Computer Science
    Journal of Systems Science & Complexity, 2005, (03) : 340 - 346
  • [23] Minimum Clique Number, Chromatic Number, and Ramsey Numbers
    Liu, Gaku
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [24] The hyper-Wiener index of graphs with a given chromatic (clique) number
    Feng, Lihua
    Yu, Guihai
    Liu, Weijun
    UTILITAS MATHEMATICA, 2012, 88 : 399 - 407
  • [25] CHROMATIC NUMBER K(P,G) OF GRAPHS
    KRAMER, F
    REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1972, (NR-1): : 67 - &
  • [26] k-CHROMATIC NUMBER OF GRAPHS ON SURFACES
    Dvorak, Zdenek
    Skrekovski, Riste
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (01) : 477 - 486
  • [27] Tight Bounds on the Clique Chromatic Number
    Joret, Gwenael
    Micek, Piotr
    Reed, Bruce
    Smid, Michiel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (03):
  • [28] On the chromatic number of graphs
    Butenko, S
    Festa, P
    Pardalos, PM
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 109 (01) : 51 - 67
  • [29] On the Chromatic Number of Graphs
    S. Butenko
    P. Festa
    P. M. Pardalos
    Journal of Optimization Theory and Applications, 2001, 109 (1) : 69 - 83
  • [30] Fractional chromatic number and circular chromatic number for distance graphs with large clique size (vol 48, pg 329, 2005)
    Liu, DDF
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 2005, 48 (04) : 329 - 330