On the chromatic number of graphs

被引:0
|
作者
Butenko, S [1 ]
Festa, P
Pardalos, PM
机构
[1] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA
[2] Univ Salerno, Dept Math & Comp Sci, I-84100 Salerno, Italy
[3] Univ Florida, Ctr Appl Optimizat, Dept Ind & Syst Engn, Gainesville, FL USA
关键词
graph coloring problems; combination optimization; integer programming; test problems;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Computing the chromatic number of a graph is an NP-hard problem. For random graphs and some other classes of graphs, estimators of the expected chromatic number have been well studied. In this paper, a new 0-1 integer programming formulation for the graph coloring problem is presented. The proposed new formulation is used to develop a method that generates graphs of known chromatic number by using the KKT optimality conditions of a related continuous nonlinear program.
引用
收藏
页码:51 / 67
页数:17
相关论文
共 50 条
  • [1] On the Chromatic Number of Graphs
    S. Butenko
    P. Festa
    P. M. Pardalos
    Journal of Optimization Theory and Applications, 2001, 109 (1) : 69 - 83
  • [2] Graphs whose circular chromatic number equals the chromatic number
    Zhu, XD
    COMBINATORICA, 1999, 19 (01) : 139 - 149
  • [3] The difference between game chromatic number and chromatic number of graphs
    Matsumoto, Naoki
    INFORMATION PROCESSING LETTERS, 2019, 151
  • [4] On the difference between chromatic number and dynamic chromatic number of graphs
    Ahadi, A.
    Akbari, S.
    Dehghan, A.
    Ghanbari, M.
    DISCRETE MATHEMATICS, 2012, 312 (17) : 2579 - 2583
  • [5] Graphs Whose Circular Chromatic Number Equals the Chromatic Number
    Xuding Zhu
    Combinatorica, 1999, 19 : 139 - 149
  • [6] On group chromatic number of graphs
    Lai, HJ
    Li, XW
    GRAPHS AND COMBINATORICS, 2005, 21 (04) : 469 - 474
  • [7] MONOTONE CHROMATIC NUMBER OF GRAPHS
    Saleh, Anwar
    Muthana, Najat
    Al-Shammakh, Wafa
    Alashwali, Hanaa
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2020, 18 (06): : 1108 - 1122
  • [8] On the harmonious chromatic number of graphs
    Araujo-Pardo, Gabriela
    Montellano-Ballesteros, Juan Jose
    Olsen, Mika
    Rubio-Montiel, Christian
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [9] Hat chromatic number of graphs
    Bosek, Bartlomiej
    Dudek, Andrzej
    Farnik, Michal
    Grytczuk, Jaroslaw
    Mazur, Przemyslaw
    DISCRETE MATHEMATICS, 2021, 344 (12)
  • [10] Chromatic number and subtrees of graphs
    Baogang Xu
    Yingli Zhang
    Frontiers of Mathematics in China, 2017, 12 : 441 - 457