Various regularity estimates for the Keller-Segel-Navier-Stokes system in Besov spaces

被引:8
|
作者
Takeuchi, Taiki [1 ]
机构
[1] Waseda Univ, Fac Sci & Engn, Dept Math, 3-4-1 Ookubo,Shinjuku Ku, Tokyo 1698555, Japan
关键词
Keller-Segel-Navier-Stokes system; Well-posedness; Homogeneous Besov spaces; Lorentz spaces; PARABOLIC-PARABOLIC TYPE; GLOBAL WEAK SOLUTIONS; MODELS; BOUNDEDNESS; BEHAVIORS; EXISTENCE; EQUATIONS;
D O I
10.1016/j.jde.2022.10.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show the local well-posedness for the Keller-Segel-Navier-Stokes system with initial data in the scaling invariant Besov spaces, where the solution exists globally in time if the initial data is sufficiently small. We also reveal that the solution belongs to the Lorentz spaces in time direction, while the solution is smooth in space and time. Moreover, we obtain the maximal regularity estimates of solutions under the certain conditions. We further show that the solution has the additional regularities if the initial data has higher regularities. This result implies that global solutions decay as the limit t -> infinity in the same norm of the space of the initial data. Our results on the Lorentz regularity estimates are based on the strategy by Kozono-Shimizu (2019) [26]. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:606 / 658
页数:53
相关论文
共 50 条
  • [41] 三维Keller-Segel-Navier-Stokes方程弱解的整体存在性
    陆生琪
    陈淼超
    刘其林
    数学学报(中文版), 2020, 63 (05) : 495 - 504
  • [42] Boundedness and asymptotic stabilization in a two-dimensional Keller-Segel-Navier-Stokes system with sub-logistic source
    Dai, Feng
    Xiang, Tian
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (11): : 2237 - 2294
  • [43] Suppressing blow-up by gradient-dependent flux limitation in a planar Keller-Segel-Navier-Stokes system
    Winkler, Michael
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (02):
  • [44] On the global well-posedness for the 2D incompressible Keller-Segel-Navier-Stokes equations
    Zhang, Qian
    Zhang, Yehua
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2019, 99 (11):
  • [45] SMALL SOLUTIONS FOR NONLINEAR HEAT EQUATIONS, THE NAVIER-STOKES EQUATION, AND THE KELLER-SEGEL SYSTEM IN BESOV AND TRIEBEL-LIZORKIN SPACES
    Iwabuchi, Tsukasa
    Nakamura, Makoto
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2013, 18 (7-8) : 687 - 736
  • [46] ABSENCE OF COLLAPSE INTO PERSISTENT DIRAC-TYPE SINGULARITIES IN A KELLER-SEGEL-NAVIER-STOKES SYSTEM INVOLVING LOCAL SENSING
    Winkler, Michael
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2023, 28 (11-12) : 921 - 952
  • [47] Global solvability and asymptotic stabilization in a three-dimensional Keller-Segel-Navier-Stokes system with indirect signal production
    Dai, Feng
    Liu, Bin
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (10): : 2091 - 2163
  • [48] Asymptotic behavior of classical solutions of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization
    Htwe, Myowin
    Pang, Peter Y. H.
    Wang, Yifu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (03):
  • [49] The Stokes Limit in a Three-Dimensional Keller–Segel–Navier–Stokes System
    Ju Zhou
    Journal of Dynamics and Differential Equations, 2023, 35 : 2157 - 2184
  • [50] Global classical solutions of 2D Keller-Segel-Navier-Stokes equations with logistic source
    Chen, Qiong
    Zhang, Qian
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (01):