TOPOLOGICAL LEARNING FOR BRAIN NETWORKS

被引:0
|
作者
Songdechakraiwut, Tanannun [1 ]
Chung, Moo K. [1 ]
机构
[1] Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53706 USA
来源
ANNALS OF APPLIED STATISTICS | 2023年 / 17卷 / 01期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
  Topological data analysis; persistent homology; topological learning; Wasserstein distance; birth-death decomposition; twin brain imaging study; PERSISTENT HOMOLOGY ANALYSIS; GRAPH-THEORETICAL ANALYSIS; HUMAN CEREBRAL-CORTEX; FUNCTIONAL CONNECTIVITY; WORKING-MEMORY; FRECHET MEANS; HEAD MOTION; MRI; REGISTRATION; CLASSIFICATION;
D O I
10.1214/22-AOAS1633
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a novel topological learning framework that integrates networks of different sizes and topology through persistent homology. Such challenging task is made possible through the introduction of a computationally efficient topological loss. The use of the proposed loss bypasses the intrinsic computational bottleneck associated with matching networks. We validate the method in extensive statistical simulations to assess its effectiveness when discriminating networks with different topology. The method is further demonstrated in a twin brain imaging study where we determine if brain networks are genetically heritable. The challenge here is due to the difficulty of overlaying the topologically different functional brain networks obtained from resting-state functional MRI onto the template structural brain network obtained through diffusion MRI.
引用
收藏
页码:403 / 433
页数:31
相关论文
共 50 条
  • [21] Brain insulin resistance deteriorates cognition by altering the topological features of brain networks
    Su, Fan
    Shu, Hao
    Ye, Qing
    Wang, Zan
    Xie, Chunming
    Yuan, Baoyu
    Zhang, Zhijun
    Bai, Feng
    NEUROIMAGE-CLINICAL, 2017, 13 : 280 - 287
  • [22] Complex brain networks:: From topological communities to clustered dynamics
    Zemanova, Lucia
    Zamora-Lopez, Gorka
    Zhou, Changsong
    Kurths, Juergen
    PRAMANA-JOURNAL OF PHYSICS, 2008, 70 (06): : 1087 - 1097
  • [23] Kernel based statistic: identifying topological differences in brain networks
    Ma, Kai
    Shao, Wei
    Zhu, Qi
    Zhang, Daoqiang
    INTELLIGENT MEDICINE, 2022, 2 (01): : 30 - 40
  • [24] Complex brain networks: From topological communities to clustered dynamics
    Lucia Zemanová
    Gorka Zamora-López
    Changsong Zhou
    Jürgen Kurths
    Pramana, 2008, 70 : 1087 - 1097
  • [25] On the Topological Changes of Brain Functional Networks under Priming and Ambiguity
    Leibnitzt, Kenji
    Shimokawa, Tetsuya
    Ihara, Aya
    Fujimaki, Norio
    Peper, Ferdinand
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2013, E96B (11) : 2741 - 2748
  • [26] Stacked Topological Preserving Dynamic Brain Networks Representation and Classification
    Zhu, Qi
    Xu, Ruting
    Wang, Ran
    Xu, Xijia
    Zhang, Zhiqiang
    Zhang, Daoqiang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (11) : 3473 - 3484
  • [27] Identifying Topological Motif Patterns of Human Brain Functional Networks
    Wei, Yongbin
    Liao, Xuhong
    Yan, Chaogan
    He, Yong
    Xia, Mingrui
    HUMAN BRAIN MAPPING, 2017, 38 (05) : 2734 - 2750
  • [28] Emotion-Induced Topological Changes in Functional Brain Networks
    Park, Chang-hyun
    Lee, Hae-Kook
    Kweon, Yong-Sil
    Lee, Chung Tai
    Kim, Ki-Tae
    Kim, Young-Joo
    Lee, Kyoung-Uk
    BRAIN TOPOGRAPHY, 2016, 29 (01) : 108 - 117
  • [29] DYNAMIC TOPOLOGICAL DATA ANALYSIS OF FUNCTIONAL HUMAN BRAIN NETWORKS
    Chung, Moo k.
    Das, Soumya
    Ombao, Hernando
    FOUNDATIONS OF DATA SCIENCE, 2024, 6 (01): : 22 - 40
  • [30] Emotion-Induced Topological Changes in Functional Brain Networks
    Chang-hyun Park
    Hae-Kook Lee
    Yong-Sil Kweon
    Chung Tai Lee
    Ki-Tae Kim
    Young-Joo Kim
    Kyoung-Uk Lee
    Brain Topography, 2016, 29 : 108 - 117