TOPOLOGICAL LEARNING FOR BRAIN NETWORKS

被引:0
|
作者
Songdechakraiwut, Tanannun [1 ]
Chung, Moo K. [1 ]
机构
[1] Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53706 USA
来源
ANNALS OF APPLIED STATISTICS | 2023年 / 17卷 / 01期
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
  Topological data analysis; persistent homology; topological learning; Wasserstein distance; birth-death decomposition; twin brain imaging study; PERSISTENT HOMOLOGY ANALYSIS; GRAPH-THEORETICAL ANALYSIS; HUMAN CEREBRAL-CORTEX; FUNCTIONAL CONNECTIVITY; WORKING-MEMORY; FRECHET MEANS; HEAD MOTION; MRI; REGISTRATION; CLASSIFICATION;
D O I
10.1214/22-AOAS1633
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a novel topological learning framework that integrates networks of different sizes and topology through persistent homology. Such challenging task is made possible through the introduction of a computationally efficient topological loss. The use of the proposed loss bypasses the intrinsic computational bottleneck associated with matching networks. We validate the method in extensive statistical simulations to assess its effectiveness when discriminating networks with different topology. The method is further demonstrated in a twin brain imaging study where we determine if brain networks are genetically heritable. The challenge here is due to the difficulty of overlaying the topologically different functional brain networks obtained from resting-state functional MRI onto the template structural brain network obtained through diffusion MRI.
引用
收藏
页码:403 / 433
页数:31
相关论文
共 50 条
  • [1] Scaling in topological properties of brain networks
    Soibam Shyamchand Singh
    Budhachandra Khundrakpam
    Andrew T. Reid
    John D. Lewis
    Alan C. Evans
    Romana Ishrat
    B. Indrajit Sharma
    R. K. Brojen Singh
    Scientific Reports, 6
  • [2] Scaling in topological properties of brain networks
    Singh, Soibam Shyamchand
    Khundrakpam, Budhachandra
    Reid, Andrew T.
    Lewis, John D.
    Evans, Alan C.
    Ishrat, Romana
    Sharma, B. Indrajit
    Singh, R. K. Brojen
    SCIENTIFIC REPORTS, 2016, 6
  • [3] Topological Distances Between Brain Networks
    Chung, Moo K.
    Lee, Hyekyoung
    Solo, Victor
    Davidson, Richard J.
    Pollak, Seth D.
    CONNECTOMICS IN NEUROIMAGING, 2017, 10511 : 161 - 170
  • [4] Learning the topological properties of brain tumors
    Demir, C
    Gultekin, SH
    Yener, B
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2005, 2 (03) : 262 - 270
  • [5] Topological relationships between brain and social networks
    Sakata, Shuzo
    Yamamori, Tetsuo
    NEURAL NETWORKS, 2007, 20 (01) : 12 - 21
  • [6] Topological phase transitions in functional brain networks
    Santos, Fernando A. N.
    Raposo, Ernesto P.
    Coutinho-Filho, Mauricio D.
    Copelli, Mauro
    Stam, Cornelis J.
    Douw, Linda
    PHYSICAL REVIEW E, 2019, 100 (03)
  • [7] Machine Learning Topological Invariants with Neural Networks
    Zhang, Pengfei
    Shen, Huitao
    Zhai, Hui
    PHYSICAL REVIEW LETTERS, 2018, 120 (06)
  • [8] Geometric Learning and Topological Inference With Biobotic Networks
    Dirafzoon, Alireza
    Bozkurt, Alper
    Lobaton, Edgar
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2017, 3 (01): : 200 - 215
  • [9] Physical and Topological Constraints on Growth in Human Brain Networks
    Maguire, Andrew M.
    Bassett, Danielle S.
    Hermundstad, Ann M.
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 154A - 155A
  • [10] Abnormal topological organization of structural brain networks in schizophrenia
    Zhang, Yuanchao
    Lin, Lei
    Lin, Ching-Po
    Zhou, Yuan
    Chou, Kun-Hsien
    Lo, Chun-Yi
    Su, Tung-Ping
    Jiang, Tianzi
    SCHIZOPHRENIA RESEARCH, 2012, 141 (2-3) : 109 - 118