Constructing unextendible product bases from multiqubit ones

被引:0
|
作者
Zhang, Taiyu [1 ]
Chen, Lin [2 ,3 ,4 ]
机构
[1] Beijing 8 High Sch, 2 Xueyuanxiaojie, Beijing 100033, Peoples R China
[2] Beihang Univ, LMIB, Beijing 100191, Peoples R China
[3] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
[4] Beihang Univ, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China
关键词
UPB; multiqubit; local unitary equivalence; POSITIVE LINEAR-MAPS; ENTANGLEMENT; SEPARABILITY; CRITERION;
D O I
10.1088/1572-9494/ac9f0f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The construction of multipartite unextendible product bases (UPBs) is a basic problem in quantum information. We respectively construct two families of 2 x 2 x 4 and 2 x 2 x 2 x 4 UPBs of size eight by using the existing four-qubit and five-qubit UPBs. As an application, we construct novel families of multipartite positive-partial-transpose entangled states, as well as their entanglement properties in terms of the geometric measure of entanglement.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Unextendible product bases and extremal density matrices with positive partial transpose
    Sollid, Per Oyvind
    Leinaas, Jon Magne
    Myrheim, Jan
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [42] UNEXTENDIBLE MUTUALLY UNBIASED BASES FROM PAULI CLASSES
    Mandayam, Prabha
    Bandyopadhyay, Somshubhro
    Grassl, Markus
    Wootters, William K.
    QUANTUM INFORMATION & COMPUTATION, 2014, 14 (9-10) : 823 - 844
  • [43] Useful variants and perturbations of completely entangled subspaces and spans of unextendible product bases
    Sengupta, Ritabrata
    Singh, Ajit Iqbal
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2024,
  • [44] Constructions of unextendible entangled bases
    Shi, Fei
    Zhang, Xiande
    Guo, Yu
    QUANTUM INFORMATION PROCESSING, 2019, 18 (10)
  • [45] Locally indistinguishable subspaces spanned by three-qubit unextendible product bases
    Duan, Runyao
    Xin, Yu
    Ying, Mingsheng
    PHYSICAL REVIEW A, 2010, 81 (03):
  • [46] The Minimum Size of Unextendible Product Bases in the Bipartite Case (and Some Multipartite Cases)
    Jianxin Chen
    Nathaniel Johnston
    Communications in Mathematical Physics, 2015, 333 : 351 - 365
  • [47] Unextendible maximally entangled bases
    Bravyi, Sergei
    Smolin, John A.
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [48] The Minimum Size of Unextendible Product Bases in the Bipartite Case (and Some Multipartite Cases)
    Chen, Jianxin
    Johnston, Nathaniel
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (01) : 351 - 365
  • [49] Extension of the unextendible product bases of 5-qubit under coarsening the system
    Jinmei Wang
    Yu Guo
    Ruiping Wen
    Quantum Information Processing, 22
  • [50] Unextendible mutually unbiased bases from Pauli classes
    Mandayam, Prabha
    Bandyopadhyay, Somshubhro
    Grassl, Markus
    Wootters, William K.
    Quantum Information and Computation, 2014, 14 (9-10): : 823 - 844