A deep convolutional neural network for efficient microglia detection

被引:3
|
作者
Suleymanova, Ilida [1 ]
Bychkov, Dmitrii [2 ]
Kopra, Jaakko [3 ]
机构
[1] Univ Helsinki, Helsinki Inst Life Sci HiLIFE, Fac Biol & Environm Sci, Helsinki, Finland
[2] Univ Helsinki, Inst Mol Med Finland FIMM, Helsinki Inst Life Sci HiLIFE, Helsinki, Finland
[3] Univ Helsinki, Fac Pharm, Div Pharmacol & Pharmacotherapy, Helsinki, Finland
来源
SCIENTIFIC REPORTS | 2023年 / 13卷 / 01期
关键词
CELL DETECTION; ACTIVATION; PAIN;
D O I
10.1038/s41598-023-37963-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microglial cells are a type of glial cells that make up 10-15% of all brain cells, and they play a significant role in neurodegenerative disorders and cardiovascular diseases. Despite their vital role in these diseases, developing fully automated microglia counting methods from immunohistological images is challenging. Current image analysis methods are inefficient and lack accuracy in detecting microglia due to their morphological heterogeneity. This study presents development and validation of a fully automated and efficient microglia detection method using the YOLOv3 deep learning-based algorithm. We applied this method to analyse the number of microglia in different spinal cord and brain regions of rats exposed to opioid-induced hyperalgesia/tolerance. Our numerical tests showed that the proposed method outperforms existing computational and manual methods with high accuracy, achieving 94% precision, 91% recall, and 92% F1-score. Furthermore, our tool is freely available and adds value to exploring different disease models. Our findings demonstrate the effectiveness and efficiency of our new tool in automated microglia detection, providing a valuable asset for researchers in neuroscience.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Intrusion detection method based on a deep convolutional neural network
    Zhang S.
    Xie X.
    Xu Y.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2019, 59 (01): : 44 - 52
  • [42] Detection of bars in galaxies using a deep convolutional neural network
    Abraham, Sheelu
    Aniyan, A. K.
    Kembhavi, Ajit K.
    Philip, N. S.
    Vaghmare, Kaustubh
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 477 (01) : 894 - 903
  • [43] Deep Structured Convolutional Neural Network for Tomato Diseases Detection
    Suryawati, Endang
    Sustika, Rika
    Yuwana, R. Sandra
    Subekti, Agus
    Pardede, Hilman F.
    2018 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2018, : 385 - 390
  • [44] CATARACT DETECTION AND GRADING BASED ON DEEP CONVOLUTIONAL NEURAL NETWORK
    Zhang, Hongyan
    Niu, Kai
    Xiong, Yanmin
    Yang, Weihua
    He, Zhiqiang
    Song, Hongxin
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [45] FNDNet - A deep convolutional neural network for fake news detection
    Kaliyar, Rohit Kumar
    Goswami, Anurag
    Narang, Pratik
    Sinha, Soumendu
    COGNITIVE SYSTEMS RESEARCH, 2020, 61 : 32 - 44
  • [46] Landslide Recognition by Deep Convolutional Neural Network and Change Detection
    Shi, Wenzhong
    Zhang, Min
    Ke, Hongfei
    Fang, Xin
    Zhan, Zhao
    Chen, Shanxiong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06): : 4654 - 4672
  • [47] Deep Convolutional Neural Network for Microseismic Signal Detection and Classification
    Hang Zhang
    Chunchi Ma
    Veronica Pazzi
    Tianbin Li
    Nicola Casagli
    Pure and Applied Geophysics, 2020, 177 : 5781 - 5797
  • [48] High Impedance Fault Detection by Convolutional Deep Neural Network
    Sirojan, Tharmakulasingam
    Lu, Shibo
    Phung, B. T.
    Zhang, Daming
    Ambikairajah, Eliathamby
    2018 IEEE INTERNATIONAL CONFERENCE ON HIGH VOLTAGE ENGINEERING AND APPLICATION (ICHVE), 2018,
  • [49] Smart Vessel Detection using Deep Convolutional Neural Network
    Joseph, Iwin Thanakumar S.
    Sasikala, J.
    Juliet, Sujitha D.
    Raj, Benson Edwin S.
    2018 FIFTH HCT INFORMATION TECHNOLOGY TRENDS (ITT): EMERGING TECHNOLOGIES FOR ARTIFICIAL INTELLIGENCE, 2018, : 28 - 32
  • [50] Learn a Deep Convolutional Neural Network for Image Smoke Detection
    Liu, Maoshen
    Gu, Ke
    Wu, Li
    Xu, Xin
    Qiao, Junfei
    DIGITAL TV AND MULTIMEDIA COMMUNICATION, 2019, 1009 : 217 - 226