Spatial-temporal uncertainty-aware graph networks for promoting accuracy and reliability of traffic forecasting

被引:1
|
作者
Jin, Xiyuan
Wang, Jing
Guo, Shengnan [1 ]
Wei, Tonglong
Zhao, Yiji
Lin, Youfang
Wan, Huaiyu
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Traffic forecasting; Uncertainty quantification; Spatial-temporal graph data mining; MODEL;
D O I
10.1016/j.eswa.2023.122143
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Providing both point estimation and uncertainty quantification for traffic forecasting is crucial for supporting accurate and reliable services in intelligent transportation systems. However, the majority of existing traffic forecasting works mainly focus on point estimation without quantifying the uncertainty of predictions. Meanwhile, existing uncertainty quantification (UQ) methods fail to capture the inherent static characteristics of traffic uncertainty along both the spatial and temporal dimensions. Directly equipping the traffic forecasting works with uncertainty quantification techniques may even damage the prediction accuracy. In this paper, we propose a novel traffic forecasting model aiming at providing point estimation and uncertainty quantification simultaneously, called STUP. Compared to the traditional graph convolution networks (GCNs), our framework is able to incorporate uncertainty quantification into traffic forecasting to further improve forecasting performance. Specifically, we first develop an adaptive strategy to initialize uncertainty distribution. Then a kind of spatial-temporal uncertainty layer is carefully designed to model the evolution process of both the traffic state and its corresponding uncertainty, along with a gated adjusting unit to avoid error information propagation. Finally, we propose a novel constraint loss to further help improve the forecasting accuracy and to alleviate the training difficulty caused by the lack of uncertainty labels. Experiments on five real-world traffic datasets demonstrate that STUP outperforms the state-of-the-art baselines on both the traffic prediction task and uncertainty quantification task.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Spatial-Temporal Similarity Fusion Graph Adversarial Convolutional Networks for traffic flow forecasting
    Wang, Bin
    Long, Zhendan
    Sheng, Jinfang
    Zhong, Qiang
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (17):
  • [32] Spatial-Temporal PDE Networks for Traffic Flow Forecasting
    Bao, Tianshu
    Wei, Hua
    Ji, Junyi
    Work, Daniel
    Johnson, Taylor Thomas
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES-APPLIED DATA SCIENCE TRACK, PT X, ECML PKDD 2024, 2024, 14950 : 166 - 182
  • [33] Spatial-Temporal Graph Discriminant AutoEncoder for Traffic Congestion Forecasting
    Peng, Jiaheng
    Guan, Tong
    Liang, Jun
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 23 - 28
  • [34] Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    Dai, Peng
    Bo, Liefeng
    Zhang, Junbo
    Zheng, Yu
    35th AAAI Conference on Artificial Intelligence, AAAI 2021, 2021, 17A : 15008 - 15015
  • [35] Spatial-Temporal Graph Sandwich Transformer for Traffic Flow Forecasting
    Fan, Yujie
    Yeh, Chin-Chia Michael
    Chen, Huiyuan
    Wang, Liang
    Zhuang, Zhongfang
    Wang, Junpeng
    Dai, Xin
    Zheng, Yan
    Zhang, Wei
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VII, 2023, 14175 : 210 - 225
  • [36] Spatial-Temporal Bipartite Graph Attention Network for Traffic Forecasting
    Lakma, Dimuthu
    Perera, Kushani
    Borovica-Gajic, Renata
    Karunasekera, Shanika
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II, PAKDD 2024, 2024, 14646 : 68 - 80
  • [37] Hybrid spatial-temporal graph neural network for traffic forecasting
    Wang, Peng
    Feng, Longxi
    Zhu, Yijie
    Wu, Haopeng
    INFORMATION FUSION, 2025, 118
  • [38] Traffic forecasting with graph spatial-temporal position recurrent network
    Chen, Yibi
    Li, Kenli
    Yeo, Chai Kiat
    Li, Keqin
    NEURAL NETWORKS, 2023, 162 : 340 - 349
  • [39] Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    Dai, Peng
    Bo, Liefeng
    Zhang, Junbo
    Zheng, Yu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 15008 - 15015
  • [40] Adaptive Graph Spatial-Temporal Transformer Network for Traffic Forecasting
    Feng, Aosong
    Tassiulas, Leandros
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 3933 - 3937