Traffic forecasting with graph spatial-temporal position recurrent network

被引:13
|
作者
Chen, Yibi [1 ,2 ]
Li, Kenli [1 ]
Yeo, Chai Kiat [2 ]
Li, Keqin [1 ,3 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[3] SUNY Coll New Paltz, Dept Comp Sci, New Paltz, NY USA
关键词
Adaptive graph learning; Approximate personalized propagation; Spatial-temporal; Traffic forecasting; Position graph convolution; PREDICTION;
D O I
10.1016/j.neunet.2023.03.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the development of social economy and smart technology, the explosive growth of vehicles has caused traffic forecasting to become a daunting challenge, especially for smart cities. Recent methods exploit graph spatial-temporal characteristics, including constructing the shared patterns of traffic data, and modeling the topological space of traffic data. However, existing methods fail to consider the spatial position information and only utilize little spatial neighborhood information. To tackle above limitation, we design a Graph Spatial-Temporal Position Recurrent Network (GSTPRN) architecture for traffic forecasting. We first construct a position graph convolution module based on self-attention and calculate the dependence strengths among the nodes to capture the spatial dependence relationship. Next, we develop approximate personalized propagation that extends the propagation range of spatial dimension information to obtain more spatial neighborhood information. Finally, we systematically integrate the position graph convolution, approximate personalized propagation and adaptive graph learning into a recurrent network (i.e. Gated Recurrent Units). Experimental evaluation on two benchmark traffic datasets demonstrates that GSTPRN is superior to the state-of-art methods.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页码:340 / 349
页数:10
相关论文
共 50 条
  • [1] Spatial-Temporal Graph Attention Gated Recurrent Transformer Network for Traffic Flow Forecasting
    Wu, Di
    Peng, Kai
    Wang, Shangguang
    Leung, Victor C. M.
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 14267 - 14281
  • [2] Spatial-Temporal Bipartite Graph Attention Network for Traffic Forecasting
    Lakma, Dimuthu
    Perera, Kushani
    Borovica-Gajic, Renata
    Karunasekera, Shanika
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II, PAKDD 2024, 2024, 14646 : 68 - 80
  • [3] Adaptive Graph Spatial-Temporal Transformer Network for Traffic Forecasting
    Feng, Aosong
    Tassiulas, Leandros
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 3933 - 3937
  • [4] Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    Dai, Peng
    Bo, Liefeng
    Zhang, Junbo
    Zheng, Yu
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 15008 - 15015
  • [5] Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting
    Shao, Zezhi
    Zhang, Zhao
    Wei, Wei
    Wang, Fei
    Xu, Yongjun
    Cao, Xin
    Jensen, Christian S.
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (11): : 2733 - 2746
  • [6] STAGCN: Spatial-Temporal Attention Graph Convolution Network for Traffic Forecasting
    Gu, Yafeng
    Deng, Li
    [J]. MATHEMATICS, 2022, 10 (09)
  • [7] AdpSTGCN: Adaptive spatial-temporal graph convolutional network for traffic forecasting
    Zhang, Xudong
    Chen, Xuewen
    Tang, Haina
    Wu, Yulei
    Shen, Hanji
    Li, Jun
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 301
  • [8] Dynamic spatial-temporal graph convolutional recurrent networks for traffic flow forecasting
    Xia, Zhichao
    Zhang, Yong
    Yang, Jielong
    Xie, Linbo
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 240
  • [9] Mask Adaptive Spatial-Temporal Recurrent Neural Network for Traffic Forecasting
    Hu, Xingbang
    Zhang, Shuo
    Zhang, Wenbo
    Huang, Hejiao
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT V, PAKDD 2024, 2024, 14649 : 259 - 270
  • [10] A spatial-temporal graph gated transformer for traffic forecasting
    Bouchemoukha, Haroun
    Zennir, Mohamed Nadjib
    Alioua, Ahmed
    [J]. TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2024, 35 (07):