Li1.3Al0.3Ti1.7(PO4)3 ceramic electrolyte fabricated from bimodal powder precursor

被引:5
|
作者
Xu, Xieyu [1 ]
Kirianova, Alina, V
Evdokimov, Pavel, V
Liu, Yangyang [2 ]
Jiao, Xingxing [2 ]
Volkov, Valentin S. [3 ]
Goodilin, Evgeny A. [1 ,2 ]
Veselova, Irina A. [2 ]
Putlayev, Valery I. [1 ,2 ]
Kapitanova, Olesya O. [2 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mat Sci, Leninskie gory 1, Moscow 119991, Russia
[2] Lomonosov Moscow State Univ, Fac Chem, Leninskie gory 1, Moscow 119991, Russia
[3] XPANCEO, Emerging Technol Res Ctr, Dubai Investment Pk 1, Dubai 6070406, U Arab Emirates
关键词
Sol-polymer processes; Solid -state electrolytes; Sintering; Ionic conductivity; Batteries; CONDUCTING SOLID-ELECTROLYTE; IONIC-CONDUCTIVITY; SINTERING TEMPERATURE; LITHIUM METAL; LATP; MICROSTRUCTURE;
D O I
10.1016/j.jeurceramsoc.2023.06.057
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A novel approach is proposed to design high-quality NASICON-type solid-state electrolytes (SSEs) based on Li1.3Al0.3Ti1.7(PO4)3 (LATP) by incorporating nanoparticles into a matrix of microparticles, which could efficiently improve densification of LATP SSEs by sintering. Moreover, LATP SSEs with bimodal microstructures are obtained by tuning mass ratio of 60 nm and 600 nm ceramic particles, which are fabricated by sol-polymer and molten quenching methods, respectively. The LATP SSE containing 60 nm and 600 nm particles with the mass ratio of 10%/90% displays a high ionic conductivity of (5.93 & PLUSMN; 0.24)x 10-4 S/cm at room temperature and relative density of 95.5 & PLUSMN; 1.1% after sintering at 900 degrees C for 6 h. Besides, the Li||LATP||Li symmetric cell with the mass ratio of 10%/90% exhibits better cyclic stability with a steady polarization voltage of 121.2 mV than that of other ratios. Therefore, SSEs with multimodal microstructures pave a promising venue for practical application of high-energy-density and safe solid-state Li metal battery.
引用
收藏
页码:6170 / 6179
页数:10
相关论文
共 50 条
  • [41] Transport and interface characteristics of Te-doped NASICON solid electrolyte Li1.3Al0.3Ti1.7(PO4)3
    Wang, Qiaohui
    Liu, Lei
    Zhao, Bojie
    Zhang, Lei
    Xiao, Xiao
    Yan, Hao
    Xu, Guoli
    Ma, Lei
    Liu, Yong
    ELECTROCHIMICA ACTA, 2021, 399
  • [42] Li1.3Ti1.7Al0.3(PO4)3,Na1.3Ti1.7Al0.3(PO4)3的离子交换研究
    娄太平
    张乐
    郭军兴
    化学学报, 2010, 68 (06) : 466 - 470
  • [43] Fabrication and characterization of Ag-doped Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity
    Soweizy, Majid
    Zahedifar, Mostafa
    Karimi, Merat
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (12) : 9614 - 9621
  • [44] Structural and electrical properties of ceramic Li-ion conductors based on Li1.3Al0.3Ti1.7(PO4)3-LiF
    Kwatek, K.
    Slubowska, W.
    Trebosc, J.
    Lafon, O.
    Nowinski, Jl
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (01) : 85 - 93
  • [45] 改进型溶胶-凝胶法制备Li1.3Al0.3Ti1.7(PO4)3
    杨程响
    石斌
    王庆杰
    电池, 2019, 49 (01) : 46 - 50
  • [46] Enhanced ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 under the influence of graphene oxide
    Huang, Ke
    Duan, Mingyang
    Lu, Xiaojuan
    Zhang, Feng
    SOLID STATE IONICS, 2024, 405
  • [47] Optimizing Li1.3Al0.3Ti1.7(PO4)3 Particle Sizes toward High Ionic Conductivity
    Li, Xiaoyi
    Zhou, Yongjian
    Tang, Jiawen
    Zhao, Siliang
    Zhang, Jingyong
    Huang, Xiao
    Tian, Bingbing
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (30) : 36289 - 36300
  • [48] Effect of boron-based glass additives on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Kang, Jingrui
    Guo, Xu
    Gu, Rui
    Tang, Yi
    Hao, Honglei
    Lan, Yu
    Jin, Li
    Wei, Xiaoyong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 941
  • [49] 溶胶-凝胶法制备Li1.3Al0.3Ti1.7(PO4)3薄膜及其性质
    肖卓炳
    麻明友
    吉首大学学报(自然科学版), 2006, (02) : 96 - 100
  • [50] Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Hallopeau, Leopold
    Bregiroux, Damien
    Rousse, Gwenaelle
    Portehault, David
    Stevens, Philippe
    Toussaint, Gwenaelle
    Laberty-Robert, Christel
    JOURNAL OF POWER SOURCES, 2018, 378 : 48 - 52