Li1.3Al0.3Ti1.7(PO4)3 ceramic electrolyte fabricated from bimodal powder precursor

被引:5
|
作者
Xu, Xieyu [1 ]
Kirianova, Alina, V
Evdokimov, Pavel, V
Liu, Yangyang [2 ]
Jiao, Xingxing [2 ]
Volkov, Valentin S. [3 ]
Goodilin, Evgeny A. [1 ,2 ]
Veselova, Irina A. [2 ]
Putlayev, Valery I. [1 ,2 ]
Kapitanova, Olesya O. [2 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mat Sci, Leninskie gory 1, Moscow 119991, Russia
[2] Lomonosov Moscow State Univ, Fac Chem, Leninskie gory 1, Moscow 119991, Russia
[3] XPANCEO, Emerging Technol Res Ctr, Dubai Investment Pk 1, Dubai 6070406, U Arab Emirates
关键词
Sol-polymer processes; Solid -state electrolytes; Sintering; Ionic conductivity; Batteries; CONDUCTING SOLID-ELECTROLYTE; IONIC-CONDUCTIVITY; SINTERING TEMPERATURE; LITHIUM METAL; LATP; MICROSTRUCTURE;
D O I
10.1016/j.jeurceramsoc.2023.06.057
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A novel approach is proposed to design high-quality NASICON-type solid-state electrolytes (SSEs) based on Li1.3Al0.3Ti1.7(PO4)3 (LATP) by incorporating nanoparticles into a matrix of microparticles, which could efficiently improve densification of LATP SSEs by sintering. Moreover, LATP SSEs with bimodal microstructures are obtained by tuning mass ratio of 60 nm and 600 nm ceramic particles, which are fabricated by sol-polymer and molten quenching methods, respectively. The LATP SSE containing 60 nm and 600 nm particles with the mass ratio of 10%/90% displays a high ionic conductivity of (5.93 & PLUSMN; 0.24)x 10-4 S/cm at room temperature and relative density of 95.5 & PLUSMN; 1.1% after sintering at 900 degrees C for 6 h. Besides, the Li||LATP||Li symmetric cell with the mass ratio of 10%/90% exhibits better cyclic stability with a steady polarization voltage of 121.2 mV than that of other ratios. Therefore, SSEs with multimodal microstructures pave a promising venue for practical application of high-energy-density and safe solid-state Li metal battery.
引用
收藏
页码:6170 / 6179
页数:10
相关论文
共 50 条
  • [31] Ion Exchange Behavior of Li1.3Ti1.7Al0.3(PO4)3 and Na1.3Ti1.7Al0.3(PO4)3
    Lou Taiping
    Zhang Le
    Guo Junxing
    ACTA CHIMICA SINICA, 2010, 68 (06) : 466 - 470
  • [32] Reduced Sintering Temperatures of Li+ Conductive Li1.3Al0.3Ti1.7(PO4)3 Ceramics
    Waetzig, Katja
    Heubner, Christian
    Kusnezoff, Mihails
    CRYSTALS, 2020, 10 (05):
  • [33] 掺杂改性对Li1.3Al0.3Ti1.7(PO4)3性能的影响
    杨程响
    石斌
    贺焰
    王庆杰
    电池, 2019, 49 (05) : 414 - 416
  • [34] Lithium Diffusion Pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) Superionic Conductor
    Monchak, Mykhailo
    Hupfer, Thomas
    Senyshyn, Anatoliy
    Boysen, Hans
    Chernyshov, Dmitry
    Hansen, Thomas
    Schell, Karl G.
    Bucharsky, Ethel C.
    Hoffmann, Michael J.
    Ehrenberg, Helmut
    INORGANIC CHEMISTRY, 2016, 55 (06) : 2941 - 2945
  • [35] Enhancing purity and ionic conductivity of NASICON-typed Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Tolganbek, Nurbol
    Yerkinbekova, Yerkezhan
    Khairullin, Alimzhan
    Bakenov, Zhumabay
    Kanamura, Kiyoshi
    Mentbayeva, Almagul
    CERAMICS INTERNATIONAL, 2021, 47 (13) : 18188 - 18195
  • [36] Development of electrode and electrolyte materials for solid-state batteries based on Li1.3Al0.3Ti1.7(PO4)3
    Lisovskyi, I
    Barsukov, V
    Solopan, S.
    Belous, A.
    Khomenko, V
    Stryzhakova, N.
    Maletin, Y.
    NANO EXPRESS, 2024, 5 (03):
  • [37] Transport and interface characteristics of Te-doped NASICON solid electrolyte Li1.3Al0.3Ti1.7(PO4)3
    Wang, Qiaohui
    Liu, Lei
    Zhao, Bojie
    Zhang, Lei
    Xiao, Xiao
    Yan, Hao
    Xu, Guoli
    Ma, Lei
    Liu, Yong
    Electrochimica Acta, 2021, 399
  • [38] Ultrafast high-temperature sintering (UHS) of Li1.3Al0.3Ti1.7(PO4)3
    Lin, Yong
    Luo, Nan
    Quattrocchi, Emanuele
    Ciucci, Francesco
    Wu, Jinghua
    Kermani, Milad
    Dong, Jian
    Hu, Chunfeng
    Grasso, Salvatore
    CERAMICS INTERNATIONAL, 2021, 47 (15) : 21982 - 21987
  • [39] Foaming suppression during the solid-state synthesis of the Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte
    Shindrov, Alexander A.
    Skachilova, Maria G.
    Gerasimov, Konstantin B.
    Kosova, Nina, V
    SOLID STATE SCIENCES, 2024, 154
  • [40] Effect of sintering temperature on sol–gel synthesized NASICON-type Li1.3Al0.3Ti1.7(PO4)3 ceramic solid electrolyte
    A. V. Deshpande
    Swati G. Bansod
    Journal of Materials Science: Materials in Electronics, 2024, 35