Identification of Subphenotypes of Opioid Use Disorder Using Unsupervised Machine Learning

被引:0
|
作者
Shah-Mohammadi, Fatemeh [1 ]
Finkelstein, Joseph [1 ]
机构
[1] Icahn Sch Med Mt Sinai, New York, NY USA
关键词
Opioid use disorder; Machine learning; Subphenotyping;
D O I
10.3233/SHTI230299
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper aimed to detect the latent clusters of patients with opioid use disorder and to identify the risk factors affecting drug misuse using unsupervised machine learning. The cluster with the highest proportion of successful treatment outcomes was characterized by the highest percentage of employment rate at admission and discharge, the highest percentage of patients who also recovered from alcohol and other drug co-use, and the highest proportion of patients who recovered from untreated health issues. Longer participation in opioid treatment programs was associated with the highest proportion of treatment success.
引用
收藏
页码:897 / 898
页数:2
相关论文
共 50 条
  • [1] Identification of spinal tuberculosis subphenotypes using routine clinical data: a study based on unsupervised machine learning
    Yao, Yuanlin
    Wu, Shaofeng
    Liu, Chong
    Zhou, Chenxing
    Zhu, Jichong
    Chen, Tianyou
    Huang, Chengqian
    Feng, Sitan
    Zhang, Bin
    Wu, Siling
    Ma, Fengzhi
    Liu, Lu
    Zhan, Xinli
    ANNALS OF MEDICINE, 2023, 55 (02)
  • [2] PREDICTING OPIOID USE DISORDER USING MACHINE LEARNING METHODOLOGIES
    Pradhan, A.
    Oates, T.
    Shaya, F. T.
    VALUE IN HEALTH, 2021, 24 : S93 - S93
  • [3] Algorithmic Fairness in Predicting Opioid Use Disorder using Machine Learning
    Kilby, Angela E.
    PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, 2021, : 272 - 272
  • [4] Predicting Opioid Overdose Readmission and Opioid Use Disorder with Machine Learning
    McDougall, Sarah
    Annapureddy, Priyanka
    Madiraju, Praveen
    Fumo, Nicole
    Hargarten, Stephen
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 4892 - 4901
  • [5] Using machine learning to study the effect of medication adherence in Opioid Use Disorder
    Warren, David
    Marashi, Amir
    Siddiqui, Arwa
    Eijaz, Asim Adnan
    Pradhan, Pooja
    Lim, David
    Call, Gary
    Dras, Mark
    PLOS ONE, 2022, 17 (12):
  • [6] IoT Device Identification Using Unsupervised Machine Learning
    Koball, Carson
    Rimal, Bhaskar P.
    Wang, Yong
    Salmen, Tyler
    Ford, Connor
    INFORMATION, 2023, 14 (06)
  • [7] Keratoconus severity identification using unsupervised machine learning
    Yousefi, Siamak
    Yousefi, Ebrahim
    Takahashi, Hidenori
    Hayashi, Takahiko
    Tampo, Hironobu
    Inoda, Satoru
    Arai, Yusuke
    Asbell, Penny
    PLOS ONE, 2018, 13 (11):
  • [8] Using Machine Learning to Predict Treatment Adherence in Patients on Medication for Opioid Use Disorder
    Burgess-Hull, Albert J. J.
    Brooks, Caleb
    Epstein, David H. H.
    Gandhi, Devang
    Oviedo, Enrique
    JOURNAL OF ADDICTION MEDICINE, 2023, 17 (01) : 28 - 34
  • [9] A machine learning framework to predict the risk of opioid use disorder
    Hasan, Md Mahmudul
    Young, Gary J.
    Patel, Mehul Rakeshkumar
    Modestino, Alicia Sasser
    Sanchez, Leon D.
    Noor-E-Alam, Md.
    MACHINE LEARNING WITH APPLICATIONS, 2021, 6
  • [10] Identification of transdiagnostic psychiatric disorder subtypes using unsupervised learning
    Helena Pelin
    Marcus Ising
    Frederike Stein
    Susanne Meinert
    Tina Meller
    Katharina Brosch
    Nils R. Winter
    Axel Krug
    Ramona Leenings
    Hannah Lemke
    Igor Nenadić
    Stefanie Heilmann-Heimbach
    Andreas J. Forstner
    Markus M. Nöthen
    Nils Opel
    Jonathan Repple
    Julia Pfarr
    Kai Ringwald
    Simon Schmitt
    Katharina Thiel
    Lena Waltemate
    Alexandra Winter
    Fabian Streit
    Stephanie Witt
    Marcella Rietschel
    Udo Dannlowski
    Tilo Kircher
    Tim Hahn
    Bertram Müller-Myhsok
    Till F. M. Andlauer
    Neuropsychopharmacology, 2021, 46 : 1895 - 1905