Identification of Subphenotypes of Opioid Use Disorder Using Unsupervised Machine Learning

被引:0
|
作者
Shah-Mohammadi, Fatemeh [1 ]
Finkelstein, Joseph [1 ]
机构
[1] Icahn Sch Med Mt Sinai, New York, NY USA
关键词
Opioid use disorder; Machine learning; Subphenotyping;
D O I
10.3233/SHTI230299
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper aimed to detect the latent clusters of patients with opioid use disorder and to identify the risk factors affecting drug misuse using unsupervised machine learning. The cluster with the highest proportion of successful treatment outcomes was characterized by the highest percentage of employment rate at admission and discharge, the highest percentage of patients who also recovered from alcohol and other drug co-use, and the highest proportion of patients who recovered from untreated health issues. Longer participation in opioid treatment programs was associated with the highest proportion of treatment success.
引用
收藏
页码:897 / 898
页数:2
相关论文
共 50 条
  • [21] Peripheral bronchial identification on chest CT using unsupervised machine learning
    Moses, Daniel A.
    Dawes, Laughlin
    Sammut, Claude
    Zrimec, Tatjana
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2018, 13 (09) : 1379 - 1395
  • [22] Unsupervised machine learning to identify subphenotypes among cardiac intensive care unit patients with heart failure
    Jentzer, Jacob C.
    Reddy, Yogesh N., V
    Soussi, Sabri
    Crespo-Diaz, Ruben
    Patel, Parag C.
    Lawler, Patrick R.
    Mebazaa, Alexandre
    Dunlay, Shannon M.
    ESC HEART FAILURE, 2024, 11 (06): : 4242 - 4256
  • [23] Identification of Coronal Holes on AIA/SDO Images Using Unsupervised Machine Learning
    Inceoglu, Fadil
    Shprits, Yuri Y.
    Heinemann, Stephan G.
    Bianco, Stefano
    ASTROPHYSICAL JOURNAL, 2022, 930 (02):
  • [24] Identification of severe acute pediatric asthma phenotypes using unsupervised machine learning
    Rogerson, Colin
    Sanchez-Pinto, L. Nelson
    Gaston, Benjamin
    Wiehe, Sarah
    Schleyer, Titus
    Tu, Wanzhu
    Mendonca, Eneida
    PEDIATRIC PULMONOLOGY, 2024, 59 (12) : 3313 - 3321
  • [25] Identification of cognitive phenotypes in pediatric multiple sclerosis using unsupervised machine learning
    Mistri, D.
    Margoni, M.
    Meani, A.
    Moiola, L.
    Vizzino, C.
    Filippi, M.
    Rocca, M.
    EUROPEAN JOURNAL OF NEUROLOGY, 2023, 30 : 364 - 364
  • [26] Identification of cognitive phenotypes in pediatric multiple sclerosis using unsupervised machine learning
    Mistri, Damiano
    Margoni, Monica
    Meani, Alessandro
    Moiola, Lucia
    Vizzino, Carmen
    Filippi, Massimo
    Rocca, Maria Assunta
    MULTIPLE SCLEROSIS JOURNAL, 2023, 29 : 23 - 24
  • [27] A novel machine learning unsupervised algorithm for sleep/wake identification using actigraphy
    Li, Xinyue
    Zhang, Yunting
    Jiang, Fan
    Zhao, Hongyu
    CHRONOBIOLOGY INTERNATIONAL, 2020, 37 (07) : 1002 - 1015
  • [28] Identification of Neuropsychological Phenotypes in Pediatric Multiple Sclerosis Using Unsupervised Machine Learning
    Mistri, Damiano
    Margoni, Monica
    Preziosa, Paolo
    Meani, Alessandro
    Vizzino, Carmen
    Moiola, Lucia
    Filippi, Massimo
    Rocca, Maria
    NEUROLOGY, 2023, 100 (17)
  • [29] IDENTIFICATION OF SEVERE ACUTE PEDIATRIC ASTHMA PHENOTYPES USING UNSUPERVISED MACHINE LEARNING
    Rogerson, Colin
    Sanchez-Pinto, L. Nelson
    Gaston, Benjamin
    Wiehe, Sarah
    Schleyer, Titus
    Tu, Wanzhu
    Mendonca, Eneida
    CRITICAL CARE MEDICINE, 2025, 53 (01)
  • [30] Machine learning for predicting opioid use disorder from healthcare data: A systematic review
    Garbin, Christian
    Marques, Nicholas
    Marques, Oge
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 236