Identification of transdiagnostic psychiatric disorder subtypes using unsupervised learning

被引:0
|
作者
Helena Pelin
Marcus Ising
Frederike Stein
Susanne Meinert
Tina Meller
Katharina Brosch
Nils R. Winter
Axel Krug
Ramona Leenings
Hannah Lemke
Igor Nenadić
Stefanie Heilmann-Heimbach
Andreas J. Forstner
Markus M. Nöthen
Nils Opel
Jonathan Repple
Julia Pfarr
Kai Ringwald
Simon Schmitt
Katharina Thiel
Lena Waltemate
Alexandra Winter
Fabian Streit
Stephanie Witt
Marcella Rietschel
Udo Dannlowski
Tilo Kircher
Tim Hahn
Bertram Müller-Myhsok
Till F. M. Andlauer
机构
[1] Max Planck Institute of Psychiatry,Department of Psychiatry and Psychotherapy
[2] International Max Planck Research School for Translational Psychiatry,Institute for Translational Psychiatry
[3] Philipps-Universität Marburg,Department of Psychiatry and Psychotherapy
[4] Center for Mind,Institute of Human Genetics
[5] Brain and Behavior (CMBB),Institute of Neuroscience and Medicine (INM
[6] Westfälische Wilhelms-Universität Münster,1)
[7] University of Bonn,Centre for Human Genetics
[8] University of Bonn School of Medicine & University Hospital Bonn,Central Institute of Mental Health, Medical Faculty Mannheim
[9] Research Center Jülich,Institute of Translational Medicine
[10] University of Marburg,Department of Neurology, Klinikum rechts der Isar, School of Medicine
[11] Heidelberg University,Global Computational Biology and Data Sciences
[12] Munich Cluster for Systems Neurology (SyNergy),undefined
[13] University of Liverpool,undefined
[14] Technical University of Munich,undefined
[15] Boehringer Ingelheim Pharma GmbH & Co. KG,undefined
来源
Neuropsychopharmacology | 2021年 / 46卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Psychiatric disorders show heterogeneous symptoms and trajectories, with current nosology not accurately reflecting their molecular etiology and the variability and symptomatic overlap within and between diagnostic classes. This heterogeneity impedes timely and targeted treatment. Our study aimed to identify psychiatric patient clusters that share clinical and genetic features and may profit from similar therapies. We used high-dimensional data clustering on deep clinical data to identify transdiagnostic groups in a discovery sample (N = 1250) of healthy controls and patients diagnosed with depression, bipolar disorder, schizophrenia, schizoaffective disorder, and other psychiatric disorders. We observed five diagnostically mixed clusters and ordered them based on severity. The least impaired cluster 0, containing most healthy controls, showed general well-being. Clusters 1–3 differed predominantly regarding levels of maltreatment, depression, daily functioning, and parental bonding. Cluster 4 contained most patients diagnosed with psychotic disorders and exhibited the highest severity in many dimensions, including medication load. Depressed patients were present in all clusters, indicating that we captured different disease stages or subtypes. We replicated all but the smallest cluster 1 in an independent sample (N = 622). Next, we analyzed genetic differences between clusters using polygenic scores (PGS) and the psychiatric family history. These genetic variables differed mainly between clusters 0 and 4 (prediction area under the receiver operating characteristic curve (AUC) = 81%; significant PGS: cross-disorder psychiatric risk, schizophrenia, and educational attainment). Our results confirm that psychiatric disorders consist of heterogeneous subtypes sharing molecular factors and symptoms. The identification of transdiagnostic clusters advances our understanding of the heterogeneity of psychiatric disorders and may support the development of personalized treatments.
引用
收藏
页码:1895 / 1905
页数:10
相关论文
共 50 条
  • [1] Identification of transdiagnostic psychiatric disorder subtypes using unsupervised learning
    Pelin, Helena
    Ising, Marcus
    Stein, Frederike
    Meinert, Susanne
    Meller, Tina
    Brosch, Katharina
    Winter, Nils R.
    Krug, Axel
    Leenings, Ramona
    Lemke, Hannah
    Nenadic, Igor
    Heilmann-Heimbach, Stefanie
    Forstner, Andreas J.
    Noethen, Markus M.
    Opel, Nils
    Repple, Jonathan
    Pfarr, Julia
    Ringwald, Kai
    Schmitt, Simon
    Thiel, Katharina
    Waltemate, Lena
    Winter, Alexandra
    Streit, Fabian
    Witt, Stephanie
    Rietschel, Marcella
    Dannlowski, Udo
    Kircher, Tilo
    Hahn, Tim
    Mueller-Myhsok, Bertram
    Andlauer, Till F. M.
    NEUROPSYCHOPHARMACOLOGY, 2021, 46 (11) : 1895 - 1905
  • [2] Identification of Subphenotypes of Opioid Use Disorder Using Unsupervised Machine Learning
    Shah-Mohammadi, Fatemeh
    Finkelstein, Joseph
    CARING IS SHARING-EXPLOITING THE VALUE IN DATA FOR HEALTH AND INNOVATION-PROCEEDINGS OF MIE 2023, 2023, 302 : 897 - 898
  • [3] Acoustic animal identification using unsupervised learning
    Guerrero, Maria J.
    Bedoya, Carol L.
    Lopez, Jose D.
    Daza, Juan M.
    Isaza, Claudia
    METHODS IN ECOLOGY AND EVOLUTION, 2023, 14 (06): : 1500 - 1514
  • [4] Developmental coordination disorder subtypes in children: An unsupervised clustering
    Gras, Domitille
    Maes, Emmanuelle Ploix
    Doulazmi, Mohamed
    Huron, Caroline
    Gallea, Cecile
    Tanguy, Odile Boespflug
    Germanaud, David
    Roze, Emmanuel
    DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY, 2023, 65 (10): : 1332 - 1342
  • [5] IoT Device Identification Using Unsupervised Machine Learning
    Koball, Carson
    Rimal, Bhaskar P.
    Wang, Yong
    Salmen, Tyler
    Ford, Connor
    INFORMATION, 2023, 14 (06)
  • [6] Keratoconus severity identification using unsupervised machine learning
    Yousefi, Siamak
    Yousefi, Ebrahim
    Takahashi, Hidenori
    Hayashi, Takahiko
    Tampo, Hironobu
    Inoda, Satoru
    Arai, Yusuke
    Asbell, Penny
    PLOS ONE, 2018, 13 (11):
  • [7] Unsupervised Machine Learning to Identify Depressive Subtypes
    Kung, Benson
    Chiang, Maurice
    Perera, Gayan
    Pritchard, Megan
    Stewart, Robert
    HEALTHCARE INFORMATICS RESEARCH, 2022, 28 (03) : 256 - 266
  • [8] Identification of psychiatric disorder subtypes from functional connectivity patterns in resting-state electroencephalography
    Zhang, Yu
    Wu, Wei
    Toll, Russell T.
    Naparstek, Sharon
    Maron-Katz, Adi
    Watts, Mallissa
    Gordon, Joseph
    Jeong, Jisoo
    Astolfi, Laura
    Shpigel, Emmanuel
    Longwell, Parker
    Sarhadi, Kamron
    El-Said, Dawlat
    Li, Yuanqing
    Cooper, Crystal
    Chin-Fatt, Cherise
    Arns, Martijn
    Goodkind, Madeleine S.
    Trivedi, Madhukar H.
    Marmar, Charles R.
    Etkin, Amit
    NATURE BIOMEDICAL ENGINEERING, 2021, 5 (04) : 309 - 323
  • [9] Identification of psychiatric disorder subtypes from functional connectivity patterns in resting-state electroencephalography
    Yu Zhang
    Wei Wu
    Russell T. Toll
    Sharon Naparstek
    Adi Maron-Katz
    Mallissa Watts
    Joseph Gordon
    Jisoo Jeong
    Laura Astolfi
    Emmanuel Shpigel
    Parker Longwell
    Kamron Sarhadi
    Dawlat El-Said
    Yuanqing Li
    Crystal Cooper
    Cherise Chin-Fatt
    Martijn Arns
    Madeleine S. Goodkind
    Madhukar H. Trivedi
    Charles R. Marmar
    Amit Etkin
    Nature Biomedical Engineering, 2021, 5 : 309 - 323
  • [10] Melt Instability Identification Using Unsupervised Machine Learning Algorithms
    Gansen, Alex
    Hennicker, Julian
    Sill, Clemens
    Dheur, Jean
    Hale, Jack S. S.
    Baller, Jorg
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2023, 308 (06)