Fusion of Textural and Visual Information for Medical Image Modality Retrieval Using Deep Learning-Based Feature Engineering

被引:2
|
作者
Iqbal, Saeed [1 ]
Qureshi, Adnan N. [2 ]
Alhussein, Musaed [3 ]
Choudhry, Imran Arshad [1 ]
Aurangzeb, Khursheed [3 ]
Khan, Tariq M. [4 ]
机构
[1] Univ Cent Punjab, Fac Informat Technol & Comp Sci, Dept Comp Sci, Lahore 54000, Pakistan
[2] Newman Univ, Fac Arts Soc & Profess Studies, Birmingham B32 3NT, England
[3] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Engn, Riyadh 11543, Saudi Arabia
[4] UNSW, Sch Comp Sci & Engn, Sydney, NSW 1466, Australia
关键词
Medical image retrieval; textural information; visual information; modality retrieval; deep learning; feature engineering; convolutional neural network; ANALYTICS;
D O I
10.1109/ACCESS.2023.3310245
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Medical image retrieval is essential to modern medical treatment because it enables doctors to diagnose and treat a variety of illnesses. In this study, we present an innovative technique for selecting the methodology of medical images by combining textural and visual information. Knowing the imaging process behind an idea, such as a chest X-ray, skin dermatology, or breast histopathology image, may be extremely helpful to healthcare professionals since it can aid in image investigation and provide important information about the imaging technique used. We use deep learning-based feature engineering to do this, using both the textural and visual components of healthcare images. We extract detailed visual information from the images using a predefined Convolutional Neural Network (CNN). The Global-Local Pyramid Pattern (GLPP), Zernike moments, and Haralick are also used to physically separate the pertinent parts from the images' other visual and factual aspects. These essential characteristics, such as image modality and imaging technique-specific characteristics, provide additional information about the technology. We employ a feature fusion method that incorporates the depictions obtained from the two modalities in order to combine the textural and visual elements. This fusion process, which improves the discrimination capacity of the feature vectors, makes accurate modality classification possible. We conducted trials on a sizable dataset consisting of various medical images to assess the effectiveness of our proposed method. The results indicate that, in comparison to conventional methods, our technique outperforms modality retrieval, with a precision of 95.89 and a recall of 96.31. The accuracy and robustness of the classification task are greatly creased by the combination of textural and visual data. Through the integration of textural and visual information, our work offers a unique method for recovering the modality of medical images. This method has the potential to greatly improve the speed and accuracy of medical image processing and diagnosis by helping experts rapidly and accurately identify the imaging technology being utilized.
引用
收藏
页码:93238 / 93253
页数:16
相关论文
共 50 条
  • [31] Post hoc visual interpretation using a deep learning-based smooth feature network
    Abbasi, Iqra Naseem
    Madni, Tahir Mustafa
    Sohail, Muhammad Khalid
    Janjua, Uzair Iqbal
    Nasir, Jamal Abdul
    SOFT COMPUTING, 2023,
  • [32] Late fusion of deep learning and handcrafted visual features for biomedical image modality classification
    Lee, Sheng Long
    Zare, Mohammad Reza
    Muller, Henning
    IET IMAGE PROCESSING, 2019, 13 (02) : 382 - 391
  • [33] Visual Saliency Fusion Based Multi-feature for Semantic Image Retrieval
    Chen, Jianan
    Bai, Cong
    Huang, Ling
    Liu, Zhi
    Chen, Shengyong
    COMPUTER VISION, PT II, 2017, 772 : 126 - 136
  • [34] Content-based image retrieval for super-resolutioned images using feature fusion: Deep learning and hand crafted
    Pathak, Debanjan
    Raju, Undi Surya Narayana
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (22):
  • [35] Deep learning-based image target detection and recognition of fractal feature fusion for BIOmetric authentication and monitoring
    Duolin Liu
    Wei Teng
    Network Modeling Analysis in Health Informatics and Bioinformatics, 2022, 11
  • [36] Deep learning-based image target detection and recognition of fractal feature fusion for BIOmetric authentication and monitoring
    Liu, Duolin
    Teng, Wei
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2022, 11 (01):
  • [37] Explainable Information Retrieval using Deep Learning for Medical images
    Singh, Apoorva
    Pannu, Husanbir
    Malhi, Avleen
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2022, 19 (01) : 277 - 307
  • [38] Black widow optimisation with deep learning-based feature fusion model for remote sensing image analysis
    Rathod, Vaishnavee Vijay
    Rana, Dipti P.
    Mehta, Rupa G.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2025, 28 (01)
  • [39] Enhanced Image Retrieval Using Multiscale Deep Feature Fusion in Supervised Hashing
    Belalia, Amina
    Belloulata, Kamel
    Redaoui, Adil
    JOURNAL OF IMAGING, 2025, 11 (01)
  • [40] Deep learning-based multidimensional feature fusion for classification of ECG arrhythmia
    Cui, Jianfeng
    Wang, Lixin
    He, Xiangmin
    De Albuquerque, Victor Hugo C.
    AlQahtani, Salman A.
    Hassan, Mohammad Mehedi
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (22): : 16073 - 16087