Improving the accuracy of automated gout flare ascertainment using natural language processing of electronic health records and linked Medicare claims data

被引:2
|
作者
Yoshida, Kazuki [1 ,2 ]
Cai, Tianrun [1 ,2 ]
Bessette, Lily G. [3 ]
Kim, Erin [3 ]
Lee, Su Been [3 ]
Zabotka, Luke E. [3 ]
Sun, Alec [3 ]
Mastrorilli, Julianna M. [3 ]
Oduol, Theresa A. [3 ]
Liu, Jun [3 ]
Solomon, Daniel H. [1 ,2 ,3 ]
Kim, Seoyoung C. [1 ,2 ,3 ]
Desai, Rishi J. [2 ,3 ]
Liao, Katherine P. [1 ,2 ,4 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Div Rheumatol Inflammat & Immun, 75 Francis St, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Dept Med, Div Pharmacoepidemiol & Pharmacoecon, 75 Francis St, Boston, MA 02115 USA
[4] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
关键词
gout; natural language processing; AMERICAN-COLLEGE; VALIDATION; DEFINITION;
D O I
10.1002/pds.5684
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: We aimed to determine whether integrating concepts from the notes from the electronic health record (EHR) data using natural language processing (NLP) could improve the identification of gout flares. Methods: Using Medicare claims linked with EHR, we selected gout patients who initiated the urate-lowering therapy (ULT). Patients' 12-month baseline period and on treatment follow-up were segmented into 1-month units. We retrieved EHR notes for months with gout diagnosis codes and processed notes for NLP concepts. We selected a random sample of 500 patients and reviewed each of their notes for the presence of a physician-documented gout flare. Months containing at least 1 note mentioning gout flares were considered months with events. We used 60% of patients to train predictive models with LASSO. We evaluated the models by the area under the curve (AUC) in the validation data and examined positive/negative predictive values (P/NPV). Results: We extracted and labeled 839 months of follow-up (280 with gout flares). The claims-only model selected 20 variables (AUC = 0.69). The NLP concept-only model selected 15 (AUC = 0.69). The combined model selected 32 claims variables and 13 NLP concepts (AUC = 0.73). The claims-only model had a PPV of 0.64 [0.50, 0.77] and an NPV of 0.71 [0.65, 0.76], whereas the combined model had a PPV of 0.76 [0.61, 0.88] and an NPV of 0.71 [0.65, 0.76]. Conclusion: Adding NLP concept variables to claims variables resulted in a small improvement in the identification of gout flares. Our data-driven claims-only model and our combined claims/NLP-concept model outperformed existing rule-based claims algorithms reliant on medication use, diagnosis, and procedure codes.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Using natural language processing of clinical text to enhance identification of opioid-related overdoses in electronic health records data
    Hazlehurst, Brian
    Green, Carla A.
    Perrin, Nancy A.
    Brandes, John
    Carrell, David S.
    Baer, Andrew
    DeVeaugh-Geiss, Angela
    Coplan, Paul M.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2019, 28 (08) : 1143 - 1151
  • [42] Natural Language Processing to Identify Lupus Nephritis Phenotype in Electronic Health Records
    Deng, Yu
    Pacheco, Jennifer
    Chung, Anh
    Mao, Chengsheng
    Smith, Joshua
    Zhao, Juan
    Wei, Wei-Qi
    Barnado, April
    Weng, Chunhua
    Liu, Cong
    Gordon, Adam
    Yu, Jingzhi
    Tedla, Yacob
    Kho, Abel
    Ramsey-Goldman, Rosalind
    Walunas, Theresa
    Luo, Yuan
    ARTHRITIS & RHEUMATOLOGY, 2021, 73 : 666 - 667
  • [43] Natural Language Processing Identifies Goals of Care Documentation in Electronic Health Records
    Joehl, Hillarie E.
    Friend, Patricia
    JOURNAL OF PAIN AND SYMPTOM MANAGEMENT, 2024, 67 (05) : E720 - E721
  • [44] Detecting transthyretin amyloid cardiomyopathy in a real-world heart failure population: automated data extraction from electronic health records using natural language processing
    Oeste, C. Clara L.
    Masuy, I.
    Beles, M.
    Moya, A.
    Verstreken, S.
    Dierckx, R.
    Heggermont, W.
    Bartunek, J.
    Hens, D.
    Vanderheyden, M.
    EUROPEAN JOURNAL OF HEART FAILURE, 2023, 25 : 122 - 122
  • [45] Using Natural Language Processing and Machine Learning to Identify Incident Stroke From Electronic Health Records
    Zhao, Yiqing
    Fu, Sunyang
    Bielinski, Suzette J.
    Decker, Paul
    Chamberlain, Alanna M.
    Roger, Veronique L.
    Liu, Hongfang
    Larson, Nicolas B.
    CIRCULATION, 2020, 141
  • [46] Deep Learning Approaches for Predicting Glaucoma Progression Using Electronic Health Records and Natural Language Processing
    Wang, Sophia Y.
    Tseng, Benjamin
    Hernandez-Boussard, Tina
    OPHTHALMOLOGY SCIENCE, 2022, 2 (02):
  • [47] Extracting social determinants of health from inpatient electronic medical records using natural language processing
    Martin, Elliot A.
    D'Souza, Adam G.
    Saini, Vineet
    Tang, Karen
    Quan, Hude
    Eastwood, Cathy A.
    JOURNAL OF EPIDEMIOLOGY AND POPULATION HEALTH, 2024, 72 (06):
  • [48] Active Computerized Pharmacovigilance Using Natural Language Processing, Statistics, and Electronic Health Records: A Feasibility Study
    Wang, Xiaoyan
    Hripcsak, George
    Markatou, Marianthi
    Friedman, Carol
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2009, 16 (03) : 328 - 337
  • [49] Identifying ANCA-Associated Vasculitis Cases in Electronic Health Records Using Natural Language Processing
    Wallace, Zachary
    Stone, John H.
    Choi, Hyon K.
    ARTHRITIS & RHEUMATOLOGY, 2018, 70
  • [50] Identifying Loneliness and Poor Social Network using Natural Language Processing from Electronic Health Records
    Patra, Braja Gopal
    Lepow, Lauren A.
    Adekkanattu, Prakash
    Pathak, Jyotishman
    INDIAN JOURNAL OF PSYCHIATRY, 2024, 66 : S55 - S55