Improving the accuracy of automated gout flare ascertainment using natural language processing of electronic health records and linked Medicare claims data

被引:2
|
作者
Yoshida, Kazuki [1 ,2 ]
Cai, Tianrun [1 ,2 ]
Bessette, Lily G. [3 ]
Kim, Erin [3 ]
Lee, Su Been [3 ]
Zabotka, Luke E. [3 ]
Sun, Alec [3 ]
Mastrorilli, Julianna M. [3 ]
Oduol, Theresa A. [3 ]
Liu, Jun [3 ]
Solomon, Daniel H. [1 ,2 ,3 ]
Kim, Seoyoung C. [1 ,2 ,3 ]
Desai, Rishi J. [2 ,3 ]
Liao, Katherine P. [1 ,2 ,4 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Div Rheumatol Inflammat & Immun, 75 Francis St, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Dept Med, Div Pharmacoepidemiol & Pharmacoecon, 75 Francis St, Boston, MA 02115 USA
[4] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
关键词
gout; natural language processing; AMERICAN-COLLEGE; VALIDATION; DEFINITION;
D O I
10.1002/pds.5684
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: We aimed to determine whether integrating concepts from the notes from the electronic health record (EHR) data using natural language processing (NLP) could improve the identification of gout flares. Methods: Using Medicare claims linked with EHR, we selected gout patients who initiated the urate-lowering therapy (ULT). Patients' 12-month baseline period and on treatment follow-up were segmented into 1-month units. We retrieved EHR notes for months with gout diagnosis codes and processed notes for NLP concepts. We selected a random sample of 500 patients and reviewed each of their notes for the presence of a physician-documented gout flare. Months containing at least 1 note mentioning gout flares were considered months with events. We used 60% of patients to train predictive models with LASSO. We evaluated the models by the area under the curve (AUC) in the validation data and examined positive/negative predictive values (P/NPV). Results: We extracted and labeled 839 months of follow-up (280 with gout flares). The claims-only model selected 20 variables (AUC = 0.69). The NLP concept-only model selected 15 (AUC = 0.69). The combined model selected 32 claims variables and 13 NLP concepts (AUC = 0.73). The claims-only model had a PPV of 0.64 [0.50, 0.77] and an NPV of 0.71 [0.65, 0.76], whereas the combined model had a PPV of 0.76 [0.61, 0.88] and an NPV of 0.71 [0.65, 0.76]. Conclusion: Adding NLP concept variables to claims variables resulted in a small improvement in the identification of gout flares. Our data-driven claims-only model and our combined claims/NLP-concept model outperformed existing rule-based claims algorithms reliant on medication use, diagnosis, and procedure codes.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Automated vehicle insurance claims processing using computer vision, natural language processing
    Fernando, Nisaja
    Kumarage, Abimani
    Thiyaganathan, Vithyashagar
    Hillary, Radesh
    Abeywardhana, Lakmini
    2022 22ND INTERNATIONAL CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER), 2022,
  • [22] Identification of recurrent atrial fibrillation using natural language processing applied to electronic health records
    Zheng, Chengyi
    Lee, Ming-sum
    Bansal, Nisha
    Go, Alan S.
    Chen, Cheng
    Harrison, Teresa N.
    Fan, Dongjie
    Allen, Amanda
    Garcia, Elisha
    Lidgard, Ben
    Singer, Daniel
    An, Jaejin
    EUROPEAN HEART JOURNAL-QUALITY OF CARE AND CLINICAL OUTCOMES, 2024, 10 (01) : 77 - 88
  • [23] Using Natural Language Processing on Electronic Health Records to Enhance Detection and Prediction of Psychosis Risk
    Irving, Jessica
    Patel, Rashmi
    Oliver, Dominic
    Colling, Craig
    Pritchard, Megan
    Broadbent, Matthew
    Baldwin, Helen
    Stahl, Daniel
    Stewart, Robert
    Fusar-Poli, Paolo
    SCHIZOPHRENIA BULLETIN, 2021, 47 (02) : 405 - 414
  • [24] Incorporating natural language processing to improve classification of axial spondyloarthritis using electronic health records
    Zhao, Sizheng Steven
    Hong, Chuan
    Cai, Tianrun
    Xu, Chang
    Huang, Jie
    Ermann, Joerg
    Goodson, Nicola J.
    Solomon, Daniel H.
    Cai, Tianxi
    Liao, Katherine P.
    RHEUMATOLOGY, 2020, 59 (05) : 1059 - 1065
  • [25] Natural Language Processing to Improve Prediction of Incident Atrial Fibrillation Using Electronic Health Records
    Ashburner, Jeffrey M.
    Chang, Yuchiao
    Wang, Xin
    Khurshid, Shaan
    Anderson, Christopher D.
    Dahal, Kumar
    Weisenfeld, Dana
    Cai, Tianrun
    Liao, Katherine P.
    Wagholikar, Kavishwar B.
    Murphy, Shawn N.
    Atlas, Steven J.
    Lubitz, Steven A.
    Singer, Daniel E.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2022, 11 (15):
  • [26] Validation of Phenotyping Algorithms for Stroke From Electronic Health Records Using Natural Language Processing
    Zhao, Yiqing
    Fu, Suyang
    Larson, Nicholas B.
    Decker, Paul A.
    Chamberlain, Alanna M.
    Roger, Veronique L.
    Liu, Hongfang
    Bielinski, Suzette J.
    CIRCULATION, 2019, 139
  • [27] Electronic health records (EHR) vs Medicare claims data: Comparing the relative completeness of non-fatal outcomes in a linked cohort
    Raman, Sudha R.
    Bush, Christopher
    Greiner, Melissa
    Smerek, Michelle M.
    Curtis, Lesley H.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2018, 27 : 86 - 86
  • [28] ENHANCING BMI DATA ACCURACY: A COMPARISON OF CLAIMS AND ELECTRONIC HEALTH RECORDS (EHR) DATABASE
    Noman, A.
    Kumparatana, P.
    Ip, Q.
    VALUE IN HEALTH, 2024, 27 (06) : S163 - S163
  • [29] Using natural language processing to construct a metastatic breast cancer cohort from linked cancer registry and electronic medical records data
    Ling, Albee Y.
    Kurian, Allison W.
    Caswell-Jin, Jennifer L.
    Sledge, George W., Jr.
    Shah, Nigam H.
    Tamang, Suzanne R.
    JAMIA OPEN, 2019, 2 (04) : 528 - 537
  • [30] Validating Medicare claims-based algorithms for deprescribing of benzodiazepines using a novel linkage with electronic health records data
    Lund, Jennifer L.
    Shmuel, Shahar
    Rice, Colleen
    Pate, Virginia
    Thorpe, Carolyn
    Hanson, Laura C.
    Niznik, Josh David
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2023, 32 : 467 - 467