Improving the accuracy of automated gout flare ascertainment using natural language processing of electronic health records and linked Medicare claims data

被引:2
|
作者
Yoshida, Kazuki [1 ,2 ]
Cai, Tianrun [1 ,2 ]
Bessette, Lily G. [3 ]
Kim, Erin [3 ]
Lee, Su Been [3 ]
Zabotka, Luke E. [3 ]
Sun, Alec [3 ]
Mastrorilli, Julianna M. [3 ]
Oduol, Theresa A. [3 ]
Liu, Jun [3 ]
Solomon, Daniel H. [1 ,2 ,3 ]
Kim, Seoyoung C. [1 ,2 ,3 ]
Desai, Rishi J. [2 ,3 ]
Liao, Katherine P. [1 ,2 ,4 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Div Rheumatol Inflammat & Immun, 75 Francis St, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Med, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Dept Med, Div Pharmacoepidemiol & Pharmacoecon, 75 Francis St, Boston, MA 02115 USA
[4] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
关键词
gout; natural language processing; AMERICAN-COLLEGE; VALIDATION; DEFINITION;
D O I
10.1002/pds.5684
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: We aimed to determine whether integrating concepts from the notes from the electronic health record (EHR) data using natural language processing (NLP) could improve the identification of gout flares. Methods: Using Medicare claims linked with EHR, we selected gout patients who initiated the urate-lowering therapy (ULT). Patients' 12-month baseline period and on treatment follow-up were segmented into 1-month units. We retrieved EHR notes for months with gout diagnosis codes and processed notes for NLP concepts. We selected a random sample of 500 patients and reviewed each of their notes for the presence of a physician-documented gout flare. Months containing at least 1 note mentioning gout flares were considered months with events. We used 60% of patients to train predictive models with LASSO. We evaluated the models by the area under the curve (AUC) in the validation data and examined positive/negative predictive values (P/NPV). Results: We extracted and labeled 839 months of follow-up (280 with gout flares). The claims-only model selected 20 variables (AUC = 0.69). The NLP concept-only model selected 15 (AUC = 0.69). The combined model selected 32 claims variables and 13 NLP concepts (AUC = 0.73). The claims-only model had a PPV of 0.64 [0.50, 0.77] and an NPV of 0.71 [0.65, 0.76], whereas the combined model had a PPV of 0.76 [0.61, 0.88] and an NPV of 0.71 [0.65, 0.76]. Conclusion: Adding NLP concept variables to claims variables resulted in a small improvement in the identification of gout flares. Our data-driven claims-only model and our combined claims/NLP-concept model outperformed existing rule-based claims algorithms reliant on medication use, diagnosis, and procedure codes.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Improving the accuracy of automated gout flare ascertainment using natural language processing of medical records and linked medicare claims data
    Yoshida, Kazuki
    Cai, Tianrun
    Bessette, Lily
    Kim, Erin
    Lee, Su Been
    Zabotka, Luke E.
    Sun, Alec
    Mastrorili, Julianna M.
    Oduol, Theresa A.
    Liu, Jun
    Solomon, Daniel H.
    Liao, Katherine P.
    Kim, Seoyoung
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2022, 31 : 509 - 509
  • [2] Improving the Accuracy of Automated Gout Flare Ascertainment Using Natural Language Processing of Medical Records and Linked Medicare Claims Data for Real-world Comparative Effectiveness Research
    Yoshida, Kazuki
    Cai, Tianrun
    Bessette, Lily G.
    Kim, Erin
    Lee, Su Been
    Zabotka, Luke E.
    Sun, Alec
    Mastrorilli, Julianna M.
    Oduol, Theresa A.
    Liu, Jun
    Solomon, Daniel
    Liao, Katherine
    Kim, Seoyoung
    ARTHRITIS & RHEUMATOLOGY, 2022, 74 : 1115 - 1117
  • [3] Ascertainment of Delirium Status Using Natural Language Processing From Electronic Health Records
    Fu, Sunyang
    Lopes, Guilherme S.
    Pagali, Sandeep R.
    Thorsteinsdottir, Bjoerg
    LeBrasseur, Nathan K.
    Wen, Andrew
    Liu, Hongfang
    Rocca, Walter A.
    Olson, Janet E.
    St Sauver, Jennifer
    Sohn, Sunghwan
    JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2022, 77 (03): : 524 - 530
  • [4] Improving the Gout Flare Chart Review Using Linked Claims-EHR Data
    Yoshida, Kazuki
    Cai, Tianrun
    Bessette, Lily G.
    Kim, Erin
    Lee, Su Been
    Zabotka, Luke E.
    Sun, Alec
    Liu, Jun
    Solomon, D. H.
    Liao, Katherine
    Kim, Seoyoung
    ARTHRITIS & RHEUMATOLOGY, 2021, 73 : 1346 - 1348
  • [5] Establishing a Validation Framework of Treatment Discontinuation in Claims Data Using Natural Language Processing and Electronic Health Records
    Yang, Chun-Ting
    Ngan, Kerry
    Kim, Dae Hyun
    Yang, Jie
    Liu, Jun
    Lin, Kueiyu Joshua
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2025,
  • [6] Ascertainment of asthma prognosis using natural language processing from electronic medical records
    Sohn, Sunghwan
    Wi, Chung-Il
    Wu, Stephen T.
    Liu, Hongfang
    Ryu, Euijung
    Krusemark, Elizabeth
    Seabright, Alicia
    Voge, Gretchen A.
    Juhn, Young J.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2018, 141 (06) : 2292 - 2294
  • [7] Ascertainment of Veterans With Metastatic Prostate Cancer in Electronic Health Records: Demonstrating the Case for Natural Language Processing
    Alba, Patrick R.
    Gao, Anthony
    Lee, Kyung Min
    Anglin-Foote, Tori
    Robison, Brian
    Katsoulakis, Evangelia
    Rose, Brent S.
    Efimova, Olga
    Ferraro, Jeffrey P.
    Patterson, Olga V.
    Shelton, Jeremy B.
    Duvall, Scott L.
    Lynch, Julie A.
    JCO CLINICAL CANCER INFORMATICS, 2021, 5 : 1005 - 1014
  • [8] Automated Extraction of Stroke Severity From Unstructured Electronic Health Records Using Natural Language Processing
    Fernandes, Marta
    Westover, M. Brandon
    Singhal, Aneesh B.
    Zafar, Sahar F.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2024, 13 (21):
  • [9] AUTOMATED, ACCURATE IDENTIFICATION OF VENTRICULAR TACHYCARDIA FROM ELECTRONIC HEALTH RECORDS USING NATURAL LANGUAGE PROCESSING
    Brennan, Kelly
    Azizi, Zahra
    Feng, Ruibin
    Goyal, Jatin
    Liu, Xichong
    Ganesan, Prasanth
    Ruiperez-Campillo, Samuel
    Baykaner, Tina
    Badhwar, Nitish
    John, Roy M.
    Viswanathan, Mohan
    Perino, Alexander
    Wang, Paul J.
    Rogers, Albert J.
    Narayan, Sanjiv M.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 2644 - 2644
  • [10] Using Natural Language Processing to Predict Risk in Electronic Health Records
    Duy Van Le
    Montgomery, James
    Kirkby, Kenneth
    Scanlan, Joel
    MEDINFO 2023 - THE FUTURE IS ACCESSIBLE, 2024, 310 : 574 - 578