A simple method for convex optimization in the oracle model

被引:0
|
作者
Dadush, Daniel [1 ]
Hojny, Christopher [2 ]
Huiberts, Sophie [3 ]
Weltge, Stefan [4 ]
机构
[1] Ctr Wiskunde & Informat, Amsterdam, Netherlands
[2] Eindhoven Univ Technol, Eindhoven, Netherlands
[3] Columbia Univ, New York, NY USA
[4] Tech Univ Munich, Munich, Germany
基金
欧洲研究理事会;
关键词
Convex optimization; Separation oracle; Cutting plane method; APPROXIMATION ALGORITHMS; FRACTIONAL PACKING; PERCEPTRON; FLOW;
D O I
10.1007/s10107-023-02005-8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We give a simple and natural method for computing approximately optimal solutions for minimizing a convex function f over a convex set K given by a separation oracle. Our method utilizes the Frank-Wolfe algorithm over the cone of valid inequalities of K and subgradients of f . Under the assumption that f is L-Lipschitz and that K contains a ball of radius r and is contained inside the origin centered ball of radius ((R L)2 ) R, using O((RL)(2)/(e)2 . R-2/ r(2)) iterations and calls to the oracle, our main method outputs a point x ? K satisfying f (x) = e +min(z?K) f (z). Our algorithm is easy to implement, and we believe it can serve as a useful alternative to existing cutting plane methods. As evidence towards this, we show that it compares favorably in terms of iteration counts to the standard LP based cutting plane method and the analytic center cutting plane method, on a testbed of combinatorial, semidefinite and machine learning instances.
引用
收藏
页码:283 / 304
页数:22
相关论文
共 50 条
  • [41] A feasible directions method for nonsmooth convex optimization
    Herskovits, Jose
    Freire, Wilhelm P.
    Fo, Mario Tanaka
    Canelas, Alfredo
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2011, 44 (03) : 363 - 377
  • [42] TRUNCATED CODIFFERENTIAL METHOD FOR NONSMOOTH CONVEX OPTIMIZATION
    Bagirov, A. M.
    Ganjehlou, A. Nazari
    Ugon, J.
    Tor, A. H.
    PACIFIC JOURNAL OF OPTIMIZATION, 2010, 6 (03): : 483 - 496
  • [43] A modified Newton method for unconstrained convex optimization
    Hailin, Liu
    ISISE 2008: INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING, VOL 2, 2008, : 754 - 757
  • [44] Generalizations of the proximal method of multipliers in convex optimization
    R. Tyrrell Rockafellar
    Computational Optimization and Applications, 2024, 87 : 219 - 247
  • [45] Regularized Newton method for unconstrained convex optimization
    Polyak, Roman A.
    MATHEMATICAL PROGRAMMING, 2009, 120 (01) : 125 - 145
  • [46] A PROJECTED PRP METHOD FOR OPTIMIZATION WITH CONVEX CONSTRAINT
    Zhou, Weijun
    PACIFIC JOURNAL OF OPTIMIZATION, 2021, 17 (01): : 47 - 55
  • [47] A Trajectory Tracking Method Using Convex Optimization
    An, Ze
    Xiong, FenFen
    Li, Chao
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 3281 - 3287
  • [48] Regularized Newton method for unconstrained convex optimization
    Roman A. Polyak
    Mathematical Programming, 2009, 120 : 125 - 145
  • [49] A piecewise conservative method for unconstrained convex optimization
    A. Scagliotti
    P. Colli Franzone
    Computational Optimization and Applications, 2022, 81 : 251 - 288
  • [50] SIMPLE PERTURBATION METHOD FOR CONVEX-MOLECULE FLUIDS
    BOUBLIK, T
    JOURNAL OF CHEMICAL PHYSICS, 1987, 87 (03): : 1751 - 1756