On One Inverse Problem for the Kolmogorov-Fokker-Planck Equation

被引:2
|
作者
Trusov, N. V. [1 ,2 ]
机构
[1] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow 119333, Russia
[2] Moscow Ctr Fundamental & Appl Math, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Kolmogorov-Fokker-Planck equation; extremal problem; numerical solution; Ramsey-type model; consumer loan;
D O I
10.1134/S0965542523030119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A mathematical description of the household economic behavior with the help of the Kolmogorov-Fokker-Planck equation is studied. This equation describes the dynamics of the household distribution density with respect to two characteristics: financial state and income. The agreement between statistical data and the solution of the Kolmogorov-Fokker-Planck equation is examined using statistical Rosstat data on the economic state of households in Russia. The problem is formalized as minimizing the deviation of the solution to the Kolmogorov-Fokker-Planck equation from the statistical data by managing household consumption. The extremal problem is solved numerically, and numerical results are presented.
引用
收藏
页码:386 / 400
页数:15
相关论文
共 50 条
  • [41] A study of the Kuramoto model for synchronization phenomena based on degenerate Kolmogorov-Fokker-Planck equations
    Pecorella, Giulio
    Polidoro, Sergio
    Vernia, Cecilia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (01)
  • [42] GLOBAL WEAK MORREY ESTIMATES FOR SOME ULTRAPARABOLIC OPERATORS OF KOLMOGOROV-FOKKER-PLANCK TYPE
    Feng, Xiaojing
    Niu, Pengcheng
    Zhu, Maochun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (05) : 1241 - 1257
  • [43] Approximate solution of the Fokker-Planck-Kolmogorov equation
    Di Paola, M
    Sofi, A
    PROBABILISTIC ENGINEERING MECHANICS, 2002, 17 (04) : 369 - 384
  • [44] Cauchy problem for the Fokker-Planck-Kolmogorov equation of a multidimensional normal Markovian process
    Ivasyshen S.D.
    Pasichnyk H.S.
    Journal of Mathematical Sciences, 2011, 176 (4) : 505 - 514
  • [45] Symmetries of the One-Dimensional Fokker–Planck–Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity
    E. A. Levchenko
    A. Yu. Trifonov
    A. V. Shapovalov
    Russian Physics Journal, 2017, 60 : 284 - 291
  • [46] On regularity and existence of weak solutions to nonlinear Kolmogorov-Fokker-Planck type equations with rough coefficients
    Garain, Prashanta
    Nystrom, Kaj
    MATHEMATICS IN ENGINEERING, 2023, 5 (02): : 1 - 37
  • [47] New exact solutions to the Fokker-Planck-Kolmogorov equation
    Unal, Gazanfer
    Sun, Jian-Qiao
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (10) : 2051 - 2059
  • [48] Fokker-Planck Equation for Kolmogorov Operators with Unbounded Coefficients
    Manca, Luigi
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2009, 27 (04) : 747 - 769
  • [49] On uniqueness of probability solutions of the Fokker-Planck-Kolmogorov equation
    Bogachev, V. I.
    Krasovitskii, T. I.
    Shaposhnikov, S. V.
    SBORNIK MATHEMATICS, 2021, 212 (06) : 745 - 781
  • [50] Symmetries of the One-Dimensional Fokker-Planck-Kolmogorov Equation with a Nonlocal Quadratic Nonlinearity
    Levchenko, E. A.
    Trifonov, A. Yu.
    Shapovalov, A. V.
    RUSSIAN PHYSICS JOURNAL, 2017, 60 (02) : 284 - 291