A study of the Kuramoto model for synchronization phenomena based on degenerate Kolmogorov-Fokker-Planck equations

被引:0
|
作者
Pecorella, Giulio [1 ]
Polidoro, Sergio [1 ]
Vernia, Cecilia [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matemat, Via Campi 213-b, I-41125 Modena, Italy
关键词
Kuramoto model; Synchronization; Degenerate Kolmogorov equations; Cauchy problem; Interacting particle systems; POPULATIONS;
D O I
10.1016/j.jmaa.2024.128837
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a nonlinear partial differential equation that arises when introducing inertial effects in the Kuramoto model. Based on the known theory of degenerate Kolmogorov operators, we prove existence, uniqueness and a priori estimates of the solution to the relevant Cauchy problem. Moreover, a stable numerical operator, which is consistent with the degenerate Kolmogorov operator, is introduced in order to produce numerical solutions. Finally, numerical experiments show how the synchronization phenomena depend on the parameters of the Kuramoto model with inertia. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:26
相关论文
共 50 条