A study of the Kuramoto model for synchronization phenomena based on degenerate Kolmogorov-Fokker-Planck equations

被引:0
|
作者
Pecorella, Giulio [1 ]
Polidoro, Sergio [1 ]
Vernia, Cecilia [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matemat, Via Campi 213-b, I-41125 Modena, Italy
关键词
Kuramoto model; Synchronization; Degenerate Kolmogorov equations; Cauchy problem; Interacting particle systems; POPULATIONS;
D O I
10.1016/j.jmaa.2024.128837
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a nonlinear partial differential equation that arises when introducing inertial effects in the Kuramoto model. Based on the known theory of degenerate Kolmogorov operators, we prove existence, uniqueness and a priori estimates of the solution to the relevant Cauchy problem. Moreover, a stable numerical operator, which is consistent with the degenerate Kolmogorov operator, is introduced in order to produce numerical solutions. Finally, numerical experiments show how the synchronization phenomena depend on the parameters of the Kuramoto model with inertia. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] A Kolmogorov-Fokker-Planck approach for a stochastic Duffing-van der Pol system
    Sharma S.N.
    Differential Equations and Dynamical Systems, 2008, 16 (4) : 351 - 377
  • [42] GLOBAL WEAK MORREY ESTIMATES FOR SOME ULTRAPARABOLIC OPERATORS OF KOLMOGOROV-FOKKER-PLANCK TYPE
    Feng, Xiaojing
    Niu, Pengcheng
    Zhu, Maochun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (05) : 1241 - 1257
  • [43] On reconstruction of coefficients of Fokker-Planck-Kolmogorov equations
    Bogachev, Vladimir I.
    Shaposhnikov, Stanislav V.
    JOURNAL OF EVOLUTION EQUATIONS, 2025, 25 (01)
  • [44] Nonlinear Fokker–Planck–Kolmogorov Equations in Hilbert Spaces
    Manita O.A.
    Journal of Mathematical Sciences, 2016, 216 (1) : 120 - 135
  • [46] On the Superposition Principle for Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2019, 100 (01) : 363 - 366
  • [47] Nonlinear Fokker-Planck-Kolmogorov Equations for Measures
    Shaposhnikov, Stanislav, V
    STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 367 - 379
  • [48] Markov Uniqueness and Fokker-Planck-Kolmogorov Equations
    Albeverio, Sergio
    Bogachev, Vladimir, I
    Roeckner, Michael
    DIRICHLET FORMS AND RELATED TOPICS: IN HONOR OF MASATOSHI FUKUSHIMA'S BEIJU (IWDFRT 2022), 2022, 394 : 1 - 21
  • [49] Integrability and continuity of solutions to Fokker–Planck–Kolmogorov equations
    V. I. Bogachev
    S. V. Shaposhnikov
    Doklady Mathematics, 2017, 96 : 583 - 586
  • [50] UNITARY REPRESENTATION OF WALKS ALONG RANDOM VECTOR FIELDS AND THE KOLMOGOROV-FOKKER-PLANCK EQUATION IN A HILBERT SPACE
    Busovikov, V. M.
    Orlov, Yu N.
    Sakbaev, V. Zh
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 218 (02) : 205 - 221