A study of the Kuramoto model for synchronization phenomena based on degenerate Kolmogorov-Fokker-Planck equations

被引:0
|
作者
Pecorella, Giulio [1 ]
Polidoro, Sergio [1 ]
Vernia, Cecilia [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matemat, Via Campi 213-b, I-41125 Modena, Italy
关键词
Kuramoto model; Synchronization; Degenerate Kolmogorov equations; Cauchy problem; Interacting particle systems; POPULATIONS;
D O I
10.1016/j.jmaa.2024.128837
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a nonlinear partial differential equation that arises when introducing inertial effects in the Kuramoto model. Based on the known theory of degenerate Kolmogorov operators, we prove existence, uniqueness and a priori estimates of the solution to the relevant Cauchy problem. Moreover, a stable numerical operator, which is consistent with the degenerate Kolmogorov operator, is introduced in order to produce numerical solutions. Finally, numerical experiments show how the synchronization phenomena depend on the parameters of the Kuramoto model with inertia. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] On the obstacle problem associated to the Kolmogorov-Fokker-Planck operator with rough coefficients
    Anceschi, Francesca
    Rebucci, Annalaura
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (05) : 1979 - 1995
  • [32] Kolmogorov-Fokker-Planck operators in dimension two: heat kernel and curvature
    Barilari, Davide
    Boarotto, Francesco
    JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (03) : 1115 - 1146
  • [33] PRELIMINARY GROUP CLASSIFICATION OF (2+1)-DIMENSIONAL LINEAR ULTRAPARABOLIC KOLMOGOROV-FOKKER-PLANCK EQUATIONS
    Davydovich, Vasilii Vasil'evich
    UFA MATHEMATICAL JOURNAL, 2015, 7 (03): : 38 - 46
  • [34] THE DYNAMICS OF MAGNETIC-FIELDS IN A HIGHLY CONDUCTING TURBULENT MEDIUM AND THE GENERALIZED KOLMOGOROV-FOKKER-PLANCK EQUATIONS
    VAINSHTEIN, SI
    KITCHATINOV, LL
    JOURNAL OF FLUID MECHANICS, 1986, 168 : 73 - 87
  • [35] DYNAMICS OF MAGNETIC FIELDS IN A HIGHLY CONDUCTING TURBULENT MEDIUM AND THE GENERALIZED KOLMOGOROV-FOKKER-PLANCK EQUATIONS.
    Vainshtein, S.I.
    Kichatinov, L.L.
    Journal of Fluid Mechanics, 1986, 168 : 73 - 87
  • [36] Fractional Sobolev spaces for vector fields and Kolmogorov-Fokker-Planck evolution operators
    Morbidelli, D
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1999, 2A : 123 - 126
  • [37] Fokker-Planck-Kolmogorov Equations with a Parameter
    Bogachev, V. I.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2023, 108 (02) : 357 - 362
  • [38] Stationary Fokker-Planck-Kolmogorov Equations
    Bogachev, Vladimir, I
    STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 3 - 24
  • [39] On the Superposition Principle for Fokker–Planck–Kolmogorov Equations
    V. I. Bogachev
    M. Röckner
    S. V. Shaposhnikov
    Doklady Mathematics, 2019, 100 : 363 - 366
  • [40] Fundamental solutions for Kolmogorov-Fokker-Planck operators with time-depending measurable coefficients
    Bramanti, Marco
    Polidoro, Sergio
    MATHEMATICS IN ENGINEERING, 2020, 2 (04): : 734 - 771