Machine learning and polymer self-consistent field theory in two spatial dimensions

被引:4
|
作者
Xuan, Yao [1 ]
Delaney, Kris T. [2 ]
Ceniceros, Hector D. [1 ]
Fredrickson, Glenn H. [2 ,3 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
[3] Univ Calif, Dept Mat & Chem Engn, Santa Barbara, CA 93106 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 158卷 / 14期
基金
美国国家科学基金会;
关键词
Block co polymers - Computational framework - Density fields - Local average - Machine-learning - Monomer density - Parameter spaces - Self-consistent-field theory - Spatial dimension - Two-dimensional;
D O I
10.1063/5.0142608
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A computational framework that leverages data from self-consistent field theory simulations with deep learning to accelerate the exploration of parameter space for block copolymers is presented. This is a substantial two-dimensional extension of the framework introduced in the work of Xuan et al. [J. Comput. Phys. 443, 110519 (2021)]. Several innovations and improvements are proposed. (1) A Sobolev space-trained, convolutional neural network is employed to handle the exponential dimension increase of the discretized, local average monomer density fields and to strongly enforce both spatial translation and rotation invariance of the predicted, field-theoretic intensive Hamiltonian. (2) A generative adversarial network (GAN) is introduced to efficiently and accurately predict saddle point, local average monomer density fields without resorting to gradient descent methods that employ the training set. This GAN approach yields important savings of both memory and computational cost. (3) The proposed machine learning framework is successfully applied to 2D cell size optimization as a clear illustration of its broad potential to accelerate the exploration of parameter space for discovering polymer nanostructures. Extensions to three-dimensional phase discovery appear to be feasible.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Numerical self-consistent field theory of multicomponent polymer blends in the Gibbs ensemble
    Mester, Zoltan
    Lynd, Nathaniel A.
    Fredrickson, Glenn H.
    SOFT MATTER, 2013, 9 (47) : 11288 - 11294
  • [32] Side chain effect on the self-assembly of coil-comb copolymer by self-consistent field theory in two dimensions
    Wang, Rong
    Jiang, Zhibin
    Yang, Hong
    Xue, Gi
    POLYMER, 2013, 54 (26) : 7080 - 7087
  • [33] Self-consistent field theory for obligatory coassembly
    Voets, I. K.
    Leermakers, F. A. M.
    PHYSICAL REVIEW E, 2008, 78 (06):
  • [34] SELF-CONSISTENT FIELD THEORY OF NUCLEAR SHAPES
    BARANGER, M
    PHYSICAL REVIEW, 1961, 122 (03): : 992 - &
  • [35] SELF-CONSISTENT FIELD-THEORY OF CRYSTALS
    MATSUMOTO, H
    TAKAHASHI, Y
    UMEZAWA, H
    PHYSICS LETTERS A, 1977, 62 (04) : 255 - 257
  • [36] Self-consistent field theory for the nucleation of micelles
    Besseling, NAM
    Stuart, MAC
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (11): : 5432 - 5436
  • [37] APPLICABILITY OF ROOTHAANS SELF-CONSISTENT FIELD THEORY
    HUZINAGA, S
    PHYSICAL REVIEW, 1960, 120 (03): : 866 - 871
  • [38] Stochastic Multiconfigurational Self-Consistent Field Theory
    Thomas, Robert E.
    Sun, Qiming
    Alavi, Ali
    Booth, George H.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (11) : 5316 - 5325
  • [39] SELF-CONSISTENT FIELD THEORY FOR ELECTRONS IN SOLIDS
    HUZINAGA, S
    PROGRESS OF THEORETICAL PHYSICS, 1962, 27 (04): : 693 - 706
  • [40] SIMULTANEOUS MULTICONFIGURATIONAL SELF-CONSISTENT FIELD THEORY
    FRAGA, S
    SMEYERS, YG
    ANALES DE FISICA, 1970, 66 (7-8): : 259 - &