Machine learning and polymer self-consistent field theory in two spatial dimensions

被引:4
|
作者
Xuan, Yao [1 ]
Delaney, Kris T. [2 ]
Ceniceros, Hector D. [1 ]
Fredrickson, Glenn H. [2 ,3 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA
[3] Univ Calif, Dept Mat & Chem Engn, Santa Barbara, CA 93106 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 158卷 / 14期
基金
美国国家科学基金会;
关键词
Block co polymers - Computational framework - Density fields - Local average - Machine-learning - Monomer density - Parameter spaces - Self-consistent-field theory - Spatial dimension - Two-dimensional;
D O I
10.1063/5.0142608
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A computational framework that leverages data from self-consistent field theory simulations with deep learning to accelerate the exploration of parameter space for block copolymers is presented. This is a substantial two-dimensional extension of the framework introduced in the work of Xuan et al. [J. Comput. Phys. 443, 110519 (2021)]. Several innovations and improvements are proposed. (1) A Sobolev space-trained, convolutional neural network is employed to handle the exponential dimension increase of the discretized, local average monomer density fields and to strongly enforce both spatial translation and rotation invariance of the predicted, field-theoretic intensive Hamiltonian. (2) A generative adversarial network (GAN) is introduced to efficiently and accurately predict saddle point, local average monomer density fields without resorting to gradient descent methods that employ the training set. This GAN approach yields important savings of both memory and computational cost. (3) The proposed machine learning framework is successfully applied to 2D cell size optimization as a clear illustration of its broad potential to accelerate the exploration of parameter space for discovering polymer nanostructures. Extensions to three-dimensional phase discovery appear to be feasible.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] THE SELF-CONSISTENT FIELD-THEORY FOR POLYMER ADSORPTION - EXTENSIONS AND REFINEMENTS
    PLOEHN, HJ
    RUSSEL, WB
    HALL, CK
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1987, 194 : 13 - POLY
  • [22] RuSseL: A Self-Consistent Field Theory Code for Inhomogeneous Polymer Interphases
    Revelas, Constantinos J.
    Sgouros, Aristotelis P.
    Lakkas, Apostolos T.
    Theodorou, Doros N.
    COMPUTATION, 2021, 9 (05)
  • [23] Self-consistent second order perturbation theory for the Hubbard model in two dimensions
    Nojiri, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (03) : 903 - 909
  • [24] SELF-CONSISTENT THEORY OF POLYMER DYNAMICS IN MELTS
    SZLEIFER, I
    WILSON, JD
    LORING, RF
    JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (11): : 8474 - 8485
  • [25] SELF-CONSISTENT THEORY OF QUIET MAGNETOTAIL IN 3 DIMENSIONS
    BIRN, J
    SOMMER, RR
    SCHINDLER, K
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1977, 82 (01): : 147 - 154
  • [26] Self-consistent field theory of two-component phospholipid membranes
    Zheng, Nan
    Geehan, J.
    Whitmore, M. D.
    PHYSICAL REVIEW E, 2007, 75 (05):
  • [27] Efficient order-adaptive methods for polymer self-consistent field theory
    Ceniceros, Hector D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 386 : 9 - 21
  • [28] Broadly Accessible Self-Consistent Field Theory for Block Polymer Materials Discovery
    Arora, Akash
    Qin, Jian
    Morse, David C.
    Delaney, Kris T.
    Fredrickson, Glenn H.
    Bates, Frank S.
    Dorfman, Kevin D.
    MACROMOLECULES, 2016, 49 (13) : 4675 - 4690
  • [29] Gaming self-consistent field theory: Generative block polymer phase discovery
    Chen, Pengyu
    Dorfman, Kevin D.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (45)
  • [30] Compression of Polymer Brushes: Quantitative Comparison of Self-Consistent Field Theory with Experiment
    Kim, Jaeup U.
    Matsen, Mark W.
    MACROMOLECULES, 2009, 42 (09) : 3430 - 3432