Acquisition of Inducing Policy in Collaborative Robot Navigation Based on Multiagent Deep Reinforcement Learning

被引:1
|
作者
Kamezaki, Mitsuhiro [1 ]
Ong, Ryan [2 ]
Sugano, Shigeki [2 ]
机构
[1] Waseda Univ, Waseda Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1620044, Japan
[2] Waseda Univ, Dept Modern Mech Engn, Shinjuku Ku, Tokyo 1698555, Japan
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
Autonomous robots; Mobile robots; Reinforcement learning; Deep learning; Multi-agent systems; Robot motion; Autonomous mobile robot; multiagent deep reinforcement learning; inducing policy acquisition; collaborative robot navigation;
D O I
10.1109/ACCESS.2023.3253513
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To avoid inefficient movement or the freezing problem in crowded environments, we previously proposed a human-aware interactive navigation method that uses inducement, i.e., voice reminders or physical touch. However, the use of inducement largely depends on many factors, including human attributes, task contents, and environmental contexts. Thus, it is unrealistic to pre-design a set of parameters such as the coefficients in the cost function, personal space, and velocity in accordance with the situation. To understand and evaluate if inducement (voice reminder in this study) is effective and how and when it must be used, we propose to comprehend them through multiagent deep reinforcement learning in which the robot voluntarily acquires an inducing policy suitable for the situation. Specifically, we evaluate whether a voice reminder can improve the time to reach the goal by learning when the robot uses it. Results of simulation experiments with four different situations show that the robot could learn inducing policies suited for each situation, and the effectiveness of inducement is greatly improved in more congested and narrow situations.
引用
收藏
页码:23946 / 23955
页数:10
相关论文
共 50 条
  • [41] Deep Reinforcement Learning for Group-Aware Robot Navigation in Crowds
    Zhou, Xianwei
    Ye, Xin
    Zhang, Kun
    Yu, Songsen
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT IV, KSEM 2023, 2023, 14120 : 25 - 34
  • [42] Robot Mapless Navigation in VUCA Environments via Deep Reinforcement Learning
    Xue, Bingxin
    Zhou, Fengyu
    Wang, Chaoqun
    Gao, Ming
    Yin, Lei
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, : 1 - 11
  • [43] A Deep Reinforcement Learning Environment for Particle Robot Navigation and Object Manipulation
    Shen, Jeremy
    Xiao, Erdong
    Liu, Yuchen
    Feng, Chen
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 6232 - 6239
  • [44] Modular deep reinforcement learning from reward and punishment for robot navigation
    Wang, Jiexin
    Elfwing, Stefan
    Uchibe, Eiji
    NEURAL NETWORKS, 2021, 135 : 115 - 126
  • [45] Robot navigation in a crowd by integrating deep reinforcement learning and online planning
    Zhiqian Zhou
    Pengming Zhu
    Zhiwen Zeng
    Junhao Xiao
    Huimin Lu
    Zongtan Zhou
    Applied Intelligence, 2022, 52 : 15600 - 15616
  • [46] Experimental Research on Deep Reinforcement Learning in Autonomous navigation of Mobile Robot
    Yue, Pengyu
    Xin, Jing
    Zhao, Huan
    Liu, Ding
    Shan, Mao
    Zhang, Jian
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 1612 - 1616
  • [47] Risk-Aware Deep Reinforcement Learning for Robot Crowd Navigation
    Sun, Xueying
    Zhang, Qiang
    Wei, Yifei
    Liu, Mingmin
    ELECTRONICS, 2023, 12 (23)
  • [48] An Improved Deep Reinforcement Learning Approach for Medical Delivery Robot Navigation
    Wang, Minghui
    Zeng, Bi
    Zhao, Rui
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 127 : 23 - 23
  • [49] Target Search and Navigation in Heterogeneous Robot Systems with Deep Reinforcement Learning
    Yun Chen
    Jiaping Xiao
    Machine Intelligence Research, 2025, 22 (1) : 79 - 90
  • [50] Robot navigation in a crowd by integrating deep reinforcement learning and online planning
    Zhou, Zhiqian
    Zhu, Pengming
    Zeng, Zhiwen
    Xiao, Junhao
    Lu, Huimin
    Zhou, Zongtan
    APPLIED INTELLIGENCE, 2022, 52 (13) : 15600 - 15616