Research on customer churn prediction and model interpretability analysis

被引:4
|
作者
Peng, Ke [1 ]
Peng, Yan [1 ]
Li, Wenguang [1 ]
机构
[1] Sichuan Univ Sci & Engn, Coll Comp Sci & Engn, Yibin, Peoples R China
来源
PLOS ONE | 2023年 / 18卷 / 12期
关键词
D O I
10.1371/journal.pone.0289724
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, with the continuous improvement of the financial system and the rapid development of the banking industry, the competition of the banking industry itself has intensified. At the same time, with the rapid development of information technology and Internet technology, customers' choice of financial products is becoming more and more diversified, and customers' dependence and loyalty to banking institutions is becoming less and less, and the problem of customer churn in commercial banks is becoming more and more prominent. How to predict customer behavior and retain existing customers has become a major challenge for banks to solve. Therefore, this study takes a bank's business data on Kaggle platform as the research object, uses multiple sampling methods to compare the data for balancing, constructs a bank customer churn prediction model for churn identification by GA-XGBoost, and conducts interpretability analysis on the GA-XGBoost model to provide decision support and suggestions for the banking industry to prevent customer churn. The results show that: (1) The applied SMOTEENN is more effective than SMOTE and ADASYN in dealing with the imbalance of banking data. (2) The F1 and AUC values of the model improved and optimized by XGBoost using genetic algorithm can reach 90% and 99%, respectively, which are optimal compared to other six machine learning models. The GA-XGBoost classifier was identified as the best solution for the customer churn problem. (3) Using Shapley values, we explain how each feature affects the model results, and analyze the features that have a high impact on the model prediction, such as the total number of transactions in the past year, the amount of transactions in the past year, the number of products owned by customers, and the total sales balance. The contribution of this paper is mainly in two aspects: (1) this study can provide useful information from the black box model based on the accurate identification of churned customers, which can provide reference for commercial banks to improve their service quality and retain customers; (2) it can provide reference for customer churn early warning models of other related industries, which can help the banking industry to maintain customer stability, maintain market position and reduce corporate losses.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Prediction of bank credit customers churn based on machine learning and interpretability analysis
    Li, Ying
    Yan, Keyue
    DATA SCIENCE IN FINANCE AND ECONOMICS, 2025, 5 (01):
  • [42] The Research of Online Shopping Customer Churn Prediction Based on Integrated Learning
    Xia, Guoen
    He, Qingzhe
    PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MECHANICAL, ELECTRONIC, CONTROL AND AUTOMATION ENGINEERING (MECAE 2018), 2018, 149 : 756 - 764
  • [43] Prediction of customer plan using churn analysis for telecom industry
    Ajitha P.
    Sivasangari A.
    Gomathi R.M.
    Indira K.
    Recent Advances in Computer Science and Communications, 2020, 13 (05): : 926 - 929
  • [44] Research on Telecom Customer Churn Prediction Method Based on Data Mining
    Liang, Xuechun
    Chen, Shuqi
    Chen, Chen
    Zhang, Taoning
    COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2019, 2019, 1042 : 485 - 496
  • [45] Customer Churn Prediction in Virtual Worlds
    Liao, Hsiu-Yu
    Chen, Luan-Yu
    Liu, Duen-Ren
    Chiu, Yi-Ling
    2015 IIAI 4TH INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS (IIAI-AAI), 2015, : 115 - 120
  • [46] Deep Convolutional Neural Networks for Customer Churn Prediction Analysis
    Chouiekh, Alae
    Ibn El Haj, El Hassane
    INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE, 2020, 14 (01) : 1 - 16
  • [47] Customer Churn Prediction for Telecom Services
    Yabas, Utku
    Cankaya, Hakki Candan
    Ince, Turker
    2012 IEEE 36TH ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), 2012, : 358 - +
  • [48] The application of social network analysis on the telecommunication customer churn prediction
    Wu, Jianlin
    Zhang, Zhansheng
    PROCEEDINGS OF JOURNAL PUBLICATION MEETING (2007), 2007, : 119 - 123
  • [49] Supervised Massive Data Analysis for Telecommunication Customer Churn Prediction
    Li, Hui
    Yang, Deliang
    Yang, Lingling
    Lu, Yao
    Lin, Xiaola
    PROCEEDINGS OF 2016 IEEE INTERNATIONAL CONFERENCES ON BIG DATA AND CLOUD COMPUTING (BDCLOUD 2016) SOCIAL COMPUTING AND NETWORKING (SOCIALCOM 2016) SUSTAINABLE COMPUTING AND COMMUNICATIONS (SUSTAINCOM 2016) (BDCLOUD-SOCIALCOM-SUSTAINCOM 2016), 2016, : 163 - 169
  • [50] Customer churn prediction for web browsers
    Wu, Xing
    Li, Pan
    Zhao, Ming
    Liu, Ying
    Gonzalez Crespo, Ruben
    Herrera-Viedma, Enrique
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 209