Research on customer churn prediction and model interpretability analysis

被引:4
|
作者
Peng, Ke [1 ]
Peng, Yan [1 ]
Li, Wenguang [1 ]
机构
[1] Sichuan Univ Sci & Engn, Coll Comp Sci & Engn, Yibin, Peoples R China
来源
PLOS ONE | 2023年 / 18卷 / 12期
关键词
D O I
10.1371/journal.pone.0289724
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent years, with the continuous improvement of the financial system and the rapid development of the banking industry, the competition of the banking industry itself has intensified. At the same time, with the rapid development of information technology and Internet technology, customers' choice of financial products is becoming more and more diversified, and customers' dependence and loyalty to banking institutions is becoming less and less, and the problem of customer churn in commercial banks is becoming more and more prominent. How to predict customer behavior and retain existing customers has become a major challenge for banks to solve. Therefore, this study takes a bank's business data on Kaggle platform as the research object, uses multiple sampling methods to compare the data for balancing, constructs a bank customer churn prediction model for churn identification by GA-XGBoost, and conducts interpretability analysis on the GA-XGBoost model to provide decision support and suggestions for the banking industry to prevent customer churn. The results show that: (1) The applied SMOTEENN is more effective than SMOTE and ADASYN in dealing with the imbalance of banking data. (2) The F1 and AUC values of the model improved and optimized by XGBoost using genetic algorithm can reach 90% and 99%, respectively, which are optimal compared to other six machine learning models. The GA-XGBoost classifier was identified as the best solution for the customer churn problem. (3) Using Shapley values, we explain how each feature affects the model results, and analyze the features that have a high impact on the model prediction, such as the total number of transactions in the past year, the amount of transactions in the past year, the number of products owned by customers, and the total sales balance. The contribution of this paper is mainly in two aspects: (1) this study can provide useful information from the black box model based on the accurate identification of churned customers, which can provide reference for commercial banks to improve their service quality and retain customers; (2) it can provide reference for customer churn early warning models of other related industries, which can help the banking industry to maintain customer stability, maintain market position and reduce corporate losses.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] The Application of the Locally Linear Model Tree on Customer Churn Prediction
    Ghorbani, Amineh
    Taghiyareh, Fattaneh
    Lucas, Caro
    2009 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION, 2009, : 472 - +
  • [32] Customer Churn Prediction Model Based on User Behavior Sequences
    翟翠艳
    张嫚嫚
    夏小玲
    缪艺玮
    陈豪
    JournalofDonghuaUniversity(EnglishEdition), 2022, 39 (06) : 597 - 602
  • [33] Customer churn prediction model based on hybrid neural networks
    Liu, Xinyu
    Xia, Guoen
    Zhang, Xianquan
    Ma, Wenbin
    Yu, Chunqiang
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [34] Enhanced Prediction Model for Customer Churn in Telecommunication Using EMOTE
    Babu, S.
    Ananthanarayanan, N. R.
    INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND APPLICATIONS, ICICA 2016, 2018, 632 : 465 - 475
  • [35] RETRACTED: A Prediction Model of Customer Churn considering Customer Value: An Empirical Research of Telecom Industry in China (Retracted Article)
    Zhao, Ming
    Zeng, Qingjun
    Chang, Ming
    Tong, Qian
    Su, Jiafu
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [36] A hybrid classification model for churn prediction based on customer clustering
    Tang, Qi
    Xia, Guoen
    Zhang, Xianquan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (01) : 69 - 80
  • [37] A Customer Churn Prediction Model in Telecom Industry Using Boosting
    Lu, Ning
    Lin, Hua
    Lu, Jie
    Zhang, Guangquan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2014, 10 (02) : 1659 - 1665
  • [38] Research of Customer Churn Analysis Based on PCA and SVM
    Ju, Chunhua
    Guo, Feipeng
    Lu, Qibei
    SEVENTH WUHAN INTERNATIONAL CONFERENCE ON E-BUSINESS, VOLS I-III: UNLOCKING THE FULL POTENTIAL OF GLOBAL TECHNOLOGY, 2008, : 331 - 337
  • [39] Customer Churn Analysis
    Yildiz, Serdar
    Aydemir, Onur
    Yilmaz, Iskender
    Say, Ayhan
    Varli, Songul
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [40] Application of GWO-attention-ConvLSTM model in customer churn prediction and satisfaction analysis in customer relationship management
    Zhang, Hui
    Zhang, Weihua
    HELIYON, 2024, 10 (17)