A Fast and Reversible Responsive Bionic Transmembrane Nanochannel for Dynamic Single-Cell Quantification of Glutathione

被引:22
|
作者
Liu, Yi-Li [1 ]
Yu, Si-Yuan [1 ]
An, Ruibing [1 ]
Miao, Yinxing [1 ]
Jiang, Dechen [1 ]
Ye, Deju [1 ]
Xu, Jing-Juan [1 ]
Zhao, Wei-Wei [1 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Analyt Chem Life Sci, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
bionic nanochannels; single-cell analysis; nanopipettes; glutathione; ionic current; PROBE;
D O I
10.1021/acsnano.3c05825
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biological channels can rapidly and continuously modulateion transportbehaviors in response to external stimuli, which play essential rolesin manipulating physiological and pathological processes in cells.Here, to mimic the biological channels, a bionic nanochannel is developedby synergizing a cationic silicon-substituted rhodamine (SiRh) witha glass nanopipette for transmembrane single-cell quantification.Taking the fast and reversible nucleophilic addition reaction betweenglutathione (GSH) and SiRh, the bionic nanochannel shows a fast andreversible response to GSH, with its inner-surface charges changingbetween positive and negative charges, leading to a distinct and reversibleswitch in ionic current rectification (ICR). With the bionic nanochannel,spatiotemporal-resolved operation is performed to quantify endogenousGSH in a single cell, allowing for monitoring of intracellular GSHfluctuation in tumor cells upon photodynamic therapy and ferroptosis.Our results demonstrate that it is a feasible tool for insitu quantification of the endogenous GSH in single cells,which may be adapted to addressing other endogenous biomolecules insingle cells by usage of other stimuli-responsive probes.
引用
收藏
页码:17468 / 17475
页数:8
相关论文
共 50 条
  • [21] Dynamic single-cell analysis for quantitative biology
    Di Carlo, Dino
    Lee, Luke P.
    ANALYTICAL CHEMISTRY, 2006, 78 (23) : 7918 - 7925
  • [22] Profiling Dynamic Patterns of Single-Cell Motility
    Maity, Debonil
    Sivakumar, Nikita
    Kamat, Pratik
    Zamponi, Nahuel
    Min, Chanhong
    Du, Wenxuan
    Jayatilaka, Hasini
    Johnston, Adrian
    Starich, Bartholomew
    Agrawal, Anshika
    Riley, Deanna
    Venturutti, Leandro
    Melnick, Ari
    Cerchietti, Leandro
    Walston, Jeremy
    Phillip, Jude M.
    ADVANCED SCIENCE, 2024, 11 (38)
  • [23] Dynamic phenotypes: illustrating a single-cell odyssey
    Wang, William
    Zhu, Bijun
    Wang, Xiangdong
    CELL BIOLOGY AND TOXICOLOGY, 2017, 33 (05) : 423 - 427
  • [24] Fast and high resolution single-cell BRET imaging
    Elise Goyet
    Nathalie Bouquier
    Vincent Ollendorff
    Julie Perroy
    Scientific Reports, 6
  • [25] Fast and high resolution single-cell BRET imaging
    Goyet, Elise
    Bouquier, Nathalie
    Ollendorff, Vincent
    Perroy, Julie
    SCIENTIFIC REPORTS, 2016, 6
  • [26] Prioritization of cell types responsive to biological perturbations in single-cell data with Augur
    Squair, Jordan W.
    Skinnider, Michael A.
    Gautier, Matthieu
    Foster, Leonard J.
    Courtine, Gregoire
    NATURE PROTOCOLS, 2021, 16 (08) : 3836 - +
  • [27] High-Content Quantification of Single-Cell Immune Dynamics
    Junkin, Michael
    Kaestli, Alicia J.
    Cheng, Zhang
    Jordi, Christian
    Albayrak, Cem
    Hoffmann, Alexander
    Tay, Savas
    CELL REPORTS, 2016, 15 (02): : 411 - 422
  • [28] Characterizing Glioblastoma Heterogeneity via Single-Cell Receptor Quantification
    Chen, Si
    Le, Thien
    Harley, Brendan A. C.
    Imoukhuede, P. I.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2018, 6
  • [29] Measuring Drug Response with Single-Cell Growth Rate Quantification
    Xu, Fiona Xi
    Wu, Ruibing
    Hu, Kailun
    Fu, Dan
    ANALYTICAL CHEMISTRY, 2023, 95 (49) : 18114 - 18121
  • [30] Isoform-level quantification for single-cell RNA sequencing
    Pan, Lu
    Dinh, Huy Q.
    Pawitan, Yudi
    Trung Nghia Vu
    BIOINFORMATICS, 2022, 38 (05) : 1287 - 1294