ON THE BOUNDS OF THE EIGENVALUES OF MATRIX POLYNOMIALS

被引:0
|
作者
Shah, Wali Mohammad [1 ]
Monga, Zahid Bashir [1 ]
机构
[1] Cent Univ Kashmir, Dept Math, Ganderbal 191201, India
来源
KOREAN JOURNAL OF MATHEMATICS | 2023年 / 31卷 / 02期
关键词
Matrix polynomial; Eigenvlaue; Enestrom-Kakeya theorem;
D O I
10.11568/kjm.2023.31.2.145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P(z) := of degree n, such that Xn j=0 Ajzj, Aj E Cmxm, 0 < j < n be a matrix polynomial An & GE;An-1 & GE;... & GE; A0 & GE; 0, An> 0. Then the eigenvalues of P(z) lie in the closed unit disk. This theorem proved by Dirr and Wimmer [IEEE Trans. Automat. Control 52(2007), 2151-2153 ] is infact a matrix extension of a famous and elegant result on the distribution of zeros of polynomials known as Enestrom-Kakeya theorem. In this paper, we prove a more general result which inter alia includes the above result as a special case. We also prove an improvement of a result due to Le<SIC>, Du, Nguye<SIC>n [Oper. Matrices, 13(2019), 937-954] besides a matrix extention of a result proved by Mohammad [Amer. Math. Monthly, vol.74, No.3, March 1967].
引用
收藏
页码:145 / 152
页数:8
相关论文
共 50 条