Bounds for eigenvalues of the adjacency matrix of a graph

被引:7
|
作者
Bhunia, Pintu [1 ]
Bag, Santanu [2 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
[2] Vivekananda Coll Women, Dept Math, Kolkata 700008, W Bengal, India
关键词
Adjacency matrix; Eigenvalues; Spectral radius; SPECTRAL-RADIUS;
D O I
10.1080/09720502.2019.1630938
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain bounds for the largest and least eigenvalues of the adjacency matrix of a simple undirected graph. We find upper bound for the second largest eigenvalue of the adjacency matrix. We prove that the bounds obtained here improve on the existing bounds and also illustrate them with examples.
引用
收藏
页码:415 / 432
页数:18
相关论文
共 50 条
  • [1] Nonpositive eigenvalues of the adjacency matrix and lower bounds for Laplacian eigenvalues
    Charles, Zachary B.
    Farber, Miriam
    Johnson, Charles R.
    Kennedy-Shaffer, Lee
    [J]. DISCRETE MATHEMATICS, 2013, 313 (13) : 1441 - 1451
  • [2] On the Extended Adjacency Eigenvalues of a Graph
    Altassan, Alaa
    Ganie, Hilal A.
    Shang, Yilun
    [J]. Information (Switzerland), 2024, 15 (10)
  • [3] Bounds for Degree-Sum adjacency eigenvalues of a graph in terms of Zagreb indices
    Shinde, Sumedha S.
    Swamy, Narayan
    Gudimani, Shaila B.
    Ramane, H. S.
    [J]. COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2021, 29 (02) : 271 - 283
  • [4] New spectral bounds on the chromatic number encompassing all eigenvalues of the adjacency matrix
    Wocjan, Pawel
    Elphick, Clive
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (03):
  • [5] BOUNDS FOR THE α-ADJACENCY ENERGY OF A GRAPH
    Ul Shaban, Rezwan
    Imran, Muhammad
    Ganie, Hilal A.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (01): : 127 - 141
  • [6] BOUNDS FOR EIGENVALUES OF A GRAPH
    Kumar, Ravinder
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2010, 4 (03): : 399 - 404
  • [7] Some Relations Between the Eigenvalues of Adjacency, Laplacian and Signless Laplacian Matrix of a Graph
    Lin, Huiqiu
    Hong, Yuan
    Shu, Jinlong
    [J]. GRAPHS AND COMBINATORICS, 2015, 31 (03) : 669 - 677
  • [8] Two new topological indices based on graph adjacency matrix eigenvalues and eigenvectors
    Alberto Rodriguez-Velazquez, Juan
    Balaban, Alexandru T.
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2019, 57 (04) : 1053 - 1074
  • [9] BOUNDS OF EIGENVALUES OF A GRAPH
    洪渊
    [J]. Acta Mathematicae Applicatae Sinica, 1988, (02) : 165 - 168
  • [10] BOUNDS ON GRAPH EIGENVALUES
    POWERS, DL
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 117 : 1 - 6