Using Convolutional Neural Networks for Blocking Prediction in Elastic Optical Networks

被引:3
|
作者
Nourmohammadi, Farzaneh [1 ]
Parmar, Chetan [2 ]
Wings, Elmar [2 ]
Comellas, Jaume [1 ]
机构
[1] Univ Politecn Cataluna, Dept Signal Theory & Commun, Barcelona 08034, Spain
[2] Univ Appl Sci Emden, Fac Technol, D-26723 Emden, Leer, Germany
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 05期
关键词
spectrum allocation; convolutional neural networks; sequential data; elastic optical networks;
D O I
10.3390/app14052003
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper presents a study on connection-blocking prediction in Elastic Optical Networks (EONs) using Convolutional Neural Networks (CNNs). In EONs, connections are established and torn down dynamically to fulfill the instantaneous requirements of the users. The dynamic allocation of the connections may cause spectrum fragmentation and lead to network performance degradation as connection blocking increases. Predicting potential blocking situations can be helpful during EON operations. For example, this prediction could be used in real networks to trigger proper spectrum defragmentation mechanisms at suitable moments, thereby enhancing network performance. Extensive simulations over the well-known NSFNET (National Science Foundation Network) backbone network topology were run by generating realistic traffic patterns. The obtained results are later used to train the developed machine learning models, which allow the prediction of connection-blocking events. Resource use was continuously monitored and recorded during the process. Two different Convolutional Neural Network models, a 1D CNN (One-Dimensional Convolutional Neural Network) and 2D CNN (Two-Dimensional Convolutional Neural Network), are proposed as the predicting methods, and their behavior is compared to other conventional models based on an SVM (Support Vector Machine) and KNN (K Nearest Neighbors). The results obtained show that the proposed 2D CNN predicts blocking with the best accuracy (92.17%), followed by the SVM, the proposed 1D CNN, and KNN. Results suggest that 2D CNN can be helpful in blocking prediction and might contribute to increasing the efficiency of future EON networks.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Classification of Optical Coherence Tomography using Convolutional Neural Networks
    Saraiva, A. A.
    Santos, D. B. S.
    Pedro, Pimentel
    Moura Sousa, Jose Vigno
    Fonseca Ferreira, N. M.
    Batista Neto, J. E. S.
    Soares, Salviano
    Valente, Antonio
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 3: BIOINFORMATICS, 2020, : 168 - 175
  • [32] A Hybrid Model for Soybean Yield Prediction Integrating Convolutional Neural Networks, Recurrent Neural Networks, and Graph Convolutional Networks
    Ingole, Vikram S.
    Kshirsagar, Ujwala A.
    Singh, Vikash
    Yadav, Manish Varun
    Krishna, Bipin
    Kumar, Roshan
    COMPUTATION, 2025, 13 (01)
  • [33] Optical diagnosis of colorectal polyps using convolutional neural networks
    Rawen Kader
    Andreas V Hadjinicolaou
    Fanourios Georgiades
    Danail Stoyanov
    Laurence B Lovat
    World Journal of Gastroenterology, 2021, 27 (35) : 5908 - 5918
  • [34] Optical diagnosis of colorectal polyps using convolutional neural networks
    Kader, Rawen
    Hadjinicolaou, Andreas, V
    Georgiades, Fanourios
    Stoyanov, Danail
    Lovat, Laurence B.
    WORLD JOURNAL OF GASTROENTEROLOGY, 2021, 27 (35) : 5908 - 5918
  • [35] Prediction of elastic stresses in porous materials using fully convolutional networks
    Keles, Ozgur
    He, Yinchuan
    Sirkeci-Mergen, Birsen
    SCRIPTA MATERIALIA, 2021, 197
  • [36] Wavefront Reconstruction and Prediction with Convolutional Neural Networks
    Swanson, Robin
    Lamb, Masen
    Correia, Carlos
    Sivanandam, Suresh
    Kutulakos, Kiriakos
    ADAPTIVE OPTICS SYSTEMS VI, 2018, 10703
  • [37] Public Transportation Prediction with Convolutional Neural Networks
    Panovski, Dancho
    Zaharia, Titus
    INTELLIGENT TRANSPORT SYSTEMS, 2020, 310 : 150 - 161
  • [38] Convolutional Recurrent Neural Networks for Glucose Prediction
    Li, Kezhi
    Daniels, John
    Liu, Chengyuan
    Herrero, Pau
    Georgiou, Pantelis
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (02) : 603 - 613
  • [39] Pedestrian trajectory prediction with convolutional neural networks
    Zamboni, Simone
    Kefato, Zekarias Tilahun
    Girdzijauskas, Sarunas
    Noren, Christoffer
    Dal Col, Laura
    PATTERN RECOGNITION, 2022, 121
  • [40] Face Attribute Prediction with Convolutional Neural Networks
    Gao, Doudou
    Yuan, Peijiang
    Sun, Ning
    Wu, Xulei
    Cai, Ying
    2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE ROBIO 2017), 2017, : 1294 - 1299