Using Convolutional Neural Networks for Blocking Prediction in Elastic Optical Networks

被引:3
|
作者
Nourmohammadi, Farzaneh [1 ]
Parmar, Chetan [2 ]
Wings, Elmar [2 ]
Comellas, Jaume [1 ]
机构
[1] Univ Politecn Cataluna, Dept Signal Theory & Commun, Barcelona 08034, Spain
[2] Univ Appl Sci Emden, Fac Technol, D-26723 Emden, Leer, Germany
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 05期
关键词
spectrum allocation; convolutional neural networks; sequential data; elastic optical networks;
D O I
10.3390/app14052003
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper presents a study on connection-blocking prediction in Elastic Optical Networks (EONs) using Convolutional Neural Networks (CNNs). In EONs, connections are established and torn down dynamically to fulfill the instantaneous requirements of the users. The dynamic allocation of the connections may cause spectrum fragmentation and lead to network performance degradation as connection blocking increases. Predicting potential blocking situations can be helpful during EON operations. For example, this prediction could be used in real networks to trigger proper spectrum defragmentation mechanisms at suitable moments, thereby enhancing network performance. Extensive simulations over the well-known NSFNET (National Science Foundation Network) backbone network topology were run by generating realistic traffic patterns. The obtained results are later used to train the developed machine learning models, which allow the prediction of connection-blocking events. Resource use was continuously monitored and recorded during the process. Two different Convolutional Neural Network models, a 1D CNN (One-Dimensional Convolutional Neural Network) and 2D CNN (Two-Dimensional Convolutional Neural Network), are proposed as the predicting methods, and their behavior is compared to other conventional models based on an SVM (Support Vector Machine) and KNN (K Nearest Neighbors). The results obtained show that the proposed 2D CNN predicts blocking with the best accuracy (92.17%), followed by the SVM, the proposed 1D CNN, and KNN. Results suggest that 2D CNN can be helpful in blocking prediction and might contribute to increasing the efficiency of future EON networks.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Prediction of Froth Flotation Performance Using Convolutional Neural Networks
    A. Jahedsaravani
    M. Massinaei
    M. Zarie
    Mining, Metallurgy & Exploration, 2023, 40 : 923 - 937
  • [22] Severity prediction of software vulnerabilities using convolutional neural networks
    Saklani, Santosh
    Kalia, Anshul
    INFORMATION AND COMPUTER SECURITY, 2025,
  • [23] Early Prediction of Sepsis Using Convolutional and Recurrent Neural Networks
    Devi, S. K. Chaya
    Reddy, Y. Varun
    Vasthav, K. Sai Sri
    Praneeth, G.
    ADVANCES IN SIGNAL PROCESSING AND COMMUNICATION ENGINEERING, ICASPACE 2021, 2022, 929 : 55 - 61
  • [24] Prediction of turbulent heat transfer using convolutional neural networks
    Kim, Junhyuk
    Lee, Changhoon
    JOURNAL OF FLUID MECHANICS, 2020, 882
  • [25] Prediction of aerodynamic flow fields using convolutional neural networks
    Bhatnagar, Saakaar
    Afshar, Yaser
    Pan, Shaowu
    Duraisamy, Karthik
    Kaushik, Shailendra
    COMPUTATIONAL MECHANICS, 2019, 64 (02) : 525 - 545
  • [26] Move Prediction Using Deep Convolutional Neural Networks in Hex
    Gao, Chao
    Hayward, Ryan
    Mueller, Martin
    IEEE TRANSACTIONS ON GAMES, 2018, 10 (04) : 336 - 343
  • [27] Prediction of Heart Disease Using Deep Convolutional Neural Networks
    Awais Mehmood
    Munwar Iqbal
    Zahid Mehmood
    Aun Irtaza
    Marriam Nawaz
    Tahira Nazir
    Momina Masood
    Arabian Journal for Science and Engineering, 2021, 46 : 3409 - 3422
  • [28] Prediction of Heart Disease Using Deep Convolutional Neural Networks
    Mehmood, Awais
    Iqbal, Munwar
    Mehmood, Zahid
    Irtaza, Aun
    Nawaz, Marriam
    Nazir, Tahira
    Masood, Momina
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (04) : 3409 - 3422
  • [29] Spontaneous Preterm Birth Prediction Using Convolutional Neural Networks
    Wlodarczyk, Tomasz
    Plotka, Szymon
    Rokita, Przemyslaw
    Sochacki-Wojcicka, Nicole
    Wojcicki, Jakub
    Lipa, Michal
    Trzcinski, Tomasz
    MEDICAL ULTRASOUND, AND PRETERM, PERINATAL AND PAEDIATRIC IMAGE ANALYSIS, ASMUS 2020, PIPPI 2020, 2020, 12437 : 274 - 283
  • [30] Wind speed prediction using multidimensional convolutional neural networks
    Trebing, Kevin
    Mehrkanoon, Siamak
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 713 - 720