Automatic brain extraction and brain tissues segmentation on multi-contrast animal MRI

被引:2
|
作者
Nour Eddin, Jamil [1 ]
Dorez, Hugo [1 ]
Curcio, Valentina [1 ]
机构
[1] HawkCell, Marcy Letoile, France
关键词
CANINE BRAIN; STEREOTAXIC ATLAS; PROBABILITY MAPS; BABOON BRAIN; MODEL;
D O I
10.1038/s41598-023-33289-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For many neuroscience applications, brain extraction in MRI images is the first pre-processing step of a quantification pipeline. Once the brain is extracted, further post-processing calculations become faster, more specific and easier to implement and interpret. It is the case, for example, of functional MRI brain studies, or relaxation time mappings and brain tissues classifications to characterise brain pathologies. Existing brain extraction tools are mostly adapted to work on the human anatomy, this gives poor results when applied to animal brain images. We have developed an atlas-based Veterinary Images Brain Extraction (VIBE) algorithm that encompasses a pre-processing step to adapt the atlas to the patient's image, and a subsequent registration step. We show that the brain extraction is achieved with excellent results in terms of Dice and Jaccard metrics. The algorithm is automatic, with no need to adapt the parameters in a broad range of situations: we successfully tested multiple MRI contrasts (T1-weighted, T2-weighted, T2-weighted FLAIR), all the acquisition planes (sagittal, dorsal, transverse), different animal species (dogs and cats) and canine cranial conformations (brachycephalic, mesocephalic, dolichocephalic). VIBE can be successfully extended to other animal species, provided that an atlas for that specific species exists. We show also how brain extraction, as a preliminary step, can help to segment brain tissues with a K-Means clustering algorithm.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] In vivo symmetric multi-contrast MRI brain templates and atlas for spontaneously hypertensive rats
    Yingying Yang
    Quan Zhang
    Jialiang Ren
    Qingfeng Zhu
    Lixin Wang
    Zuojun Geng
    Brain Structure and Function, 2022, 227 : 1789 - 1801
  • [22] A multi-contrast MRI study of microstructural brain damage in patients with mild cognitive impairment
    Granziera, C.
    Daducci, A.
    Donati, A.
    Bonnier, G.
    Romascano, D.
    Roche, A.
    Cuadra, M. Bach
    Schmitter, D.
    Kloeppel, S.
    Meuli, R.
    von Guntend, A.
    Krueger, G.
    NEUROIMAGE-CLINICAL, 2015, 8 : 631 - 639
  • [23] Virtual mouse brain histology from multi-contrast MRI via deep learning
    Liang, Zifei
    Lee, Choong H.
    Arefin, Tanzil M.
    Dong, Zijun
    Walczak, Piotr
    Shi, Song-Hai
    Knoll, Florian
    Ge, Yulin
    Ying, Leslie
    Zhang, Jiangyang
    ELIFE, 2022, 11
  • [24] Multi-atlas Segmentation Enables Robust Multi-contrast MRI Spleen Segmentation for Splenomegaly
    Huo, Yuankai
    Liu, Jiaqi
    Xu, Zhoubing
    Harrigan, Robert L.
    Assad, Albert
    Abramson, Richard G.
    Landman, Bennett A.
    MEDICAL IMAGING 2017: IMAGE PROCESSING, 2017, 10133
  • [25] Automatic segmentation of newborn brain MRI
    Weisenfeld, Neil I.
    Warfield, Simon K.
    NEUROIMAGE, 2009, 47 (02) : 564 - 572
  • [26] Automatic segmentation of neonatal brain MRI
    Prastawa, M
    Gilmore, J
    Lin, WL
    Gerig, G
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2004, PT 1, PROCEEDINGS, 2004, 3216 : 10 - 17
  • [27] Fully automatic segmentation of the brain in MRI
    Atkins, MS
    Mackiewich, BT
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (01) : 98 - 107
  • [28] Fully automatic brain tumor extraction and tissue segmentation from multimodal MRI brain images
    Thiruvenkadam, Kalaiselvi
    Nagarajan, Kalaichelvi
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2021, 31 (01) : 336 - 350
  • [29] Joint Reconstruction of Multi-Contrast MRI for Multiple Sclerosis Lesion Segmentation
    Gomez, Pedro A.
    Sperl, Jonathan I.
    Sprenger, Tim
    Metzler-Baddeley, Claudia
    Jones, Derek K.
    Saemann, Philipp
    Czisch, Michael
    Menzel, Marion I.
    Menze, Bjoern H.
    BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, : 155 - 160
  • [30] Automatic Whole Brain MRI Segmentation of the Developing Neonatal Brain
    Makropoulos, Antonios
    Gousias, Ioannis S.
    Ledig, Christian
    Aljabar, Paul
    Serag, Ahmed
    Hajnal, Joseph V.
    Edwards, A. David
    Counsell, Serena J.
    Rueckert, Daniel
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (09) : 1818 - 1831