Automatic segmentation of neonatal brain MRI

被引:0
|
作者
Prastawa, M [1 ]
Gilmore, J
Lin, WL
Gerig, G
机构
[1] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Psychiat, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27599 USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper describes an automatic tissue segmentation method for neonatal MRI. The analysis and study of neonatal brain MRI is of great interest due to its potential for studying early growth patterns and morphologic change in neurodevelopmental disorders. Automatic segmentation of these images is a challenging task mainly due to the low intensity contrast and the non-uniformity of white matter intensities, where white matter can be divided into early myelination regions and non-myelinated regions. The degree of myelination is a fractional voxel property that represents regional changes of white matter as a function of age. Our method makes use of a registered probabilistic brain atlas to select training samples and to be used as a spatial prior. The method first uses graph clustering and robust estimation to estimate the initial intensity distributions. The estimates are then used together with the spatial priors to perform bias correction. Finally, the method refines the segmentation using sample pruning and non-parametric density estimation. Preliminary results show that the method is able to segment the major brain structures, identifying early myelination regions and non-myelinated regions.
引用
收藏
页码:10 / 17
页数:8
相关论文
共 50 条
  • [1] Automatic Tissue Segmentation of Neonatal Brain MRI
    George, Maryjo M.
    Kalaivani, S.
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMMUNICATION AND ELECTRONICS SYSTEMS (ICCES), 2016, : 491 - 495
  • [2] Automatic neonatal brain tissue segmentation with MRI
    Srhoj-Egekher, Vedran
    Benders, Manon J. N. L.
    Viergever, Max A.
    Isgum, Ivana
    MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
  • [3] Automatic Whole Brain MRI Segmentation of the Developing Neonatal Brain
    Makropoulos, Antonios
    Gousias, Ioannis S.
    Ledig, Christian
    Aljabar, Paul
    Serag, Ahmed
    Hajnal, Joseph V.
    Edwards, A. David
    Counsell, Serena J.
    Rueckert, Daniel
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (09) : 1818 - 1831
  • [4] A review on automatic fetal and neonatal brain MRI segmentation
    Makropoulos, Antonios
    Counsell, Serena J.
    Rueckert, Daniel
    NEUROIMAGE, 2018, 170 : 231 - 248
  • [5] Automatic Segmentation of Eight Tissue Classes in Neonatal Brain MRI
    Anbeek, Petronella
    Isgum, Ivana
    van Kooiji, Britt J. M.
    Moi, Christian P.
    Kersbergen, Karina J.
    Groenendaal, Floris
    Viergever, Max A.
    de Vries, Linda S.
    Benders, Manon J. N. L.
    PLOS ONE, 2013, 8 (12):
  • [6] Automatic segmentation of the preterm neonatal brain with MRI using supervised classification
    Chita, Sabina M.
    Benders, Manon
    Moeskops, Pim
    Kersbergen, Karina J.
    Viergever, Max A.
    Isgum, Ivana
    MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
  • [7] Automatic segmentation of the brain in MRI
    Atkins, M.S.
    Mackiewich, B.T.
    Lecture Notes in Computer Science, 1131
  • [8] Automatic segmentation of the brain in MRI
    Atkins, MS
    Mackiewich, BT
    VISUALIZATION IN BIOMEDICAL COMPUTING, 1996, 1131 : 241 - 246
  • [9] Automatic Pattern Discovery of Neonatal Brain Tumor Segmentation and Abnormalities in MRI Sequence
    Prashantha, S. J.
    Poornima, K. M.
    EMERGING RESEARCH IN ELECTRONICS, COMPUTER SCIENCE AND TECHNOLOGY, ICERECT 2018, 2019, 545 : 107 - 116
  • [10] Neonatal brain MRI segmentation: A review
    Devi, Chelli N.
    Chandrasekharan, Anupama
    Sundararaman, V. K.
    Alex, Zachariah C.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 64 : 163 - 178