Automatic segmentation of neonatal brain MRI

被引:0
|
作者
Prastawa, M [1 ]
Gilmore, J
Lin, WL
Gerig, G
机构
[1] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Psychiat, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27599 USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper describes an automatic tissue segmentation method for neonatal MRI. The analysis and study of neonatal brain MRI is of great interest due to its potential for studying early growth patterns and morphologic change in neurodevelopmental disorders. Automatic segmentation of these images is a challenging task mainly due to the low intensity contrast and the non-uniformity of white matter intensities, where white matter can be divided into early myelination regions and non-myelinated regions. The degree of myelination is a fractional voxel property that represents regional changes of white matter as a function of age. Our method makes use of a registered probabilistic brain atlas to select training samples and to be used as a spatial prior. The method first uses graph clustering and robust estimation to estimate the initial intensity distributions. The estimates are then used together with the spatial priors to perform bias correction. Finally, the method refines the segmentation using sample pruning and non-parametric density estimation. Preliminary results show that the method is able to segment the major brain structures, identifying early myelination regions and non-myelinated regions.
引用
收藏
页码:10 / 17
页数:8
相关论文
共 50 条
  • [41] Automatic Brain Mask Segmentation for Mono-modal MRI
    Yang, Yanwu
    Ye, Chenfei
    Guo, Xutao
    Yang, Chushu
    Ma, Heather T.
    PROCEEDINGS OF 2020 10TH INTERNATIONAL CONFERENCE ON BIOSCIENCE, BIOCHEMISTRY AND BIOINFORMATICS (ICBBB 2020), 2020, : 124 - 128
  • [42] A scoping review of automatic and semi-automatic MRI segmentation in human brain imaging
    Chau, M.
    Vu, H.
    Debnath, T.
    Rahman, M. G.
    RADIOGRAPHY, 2025, 31 (02)
  • [43] Morphology-driven automatic segmentation of MR images of the neonatal brain
    Gui, Laura
    Lisowski, Radoslaw
    Faundez, Tamara
    Hueppi, Petra S.
    Lazeyras, Francois
    Kocher, Michel
    MEDICAL IMAGE ANALYSIS, 2012, 16 (08) : 1565 - 1579
  • [44] Improved neonatal brain MRI segmentation by interpolation of motion corrupted slices
    Verschuur, Anouk S.
    Boswinkel, Vivian
    Tax, Chantal M. W.
    van Osch, Jochen A. C.
    Nijholt, Ingrid M.
    Slump, Cornelis H.
    de Vries, Linda S.
    van Wezel-Meijler, Gerda
    Leemans, Alexander
    Boomsma, Martijn F.
    JOURNAL OF NEUROIMAGING, 2022, 32 (03) : 480 - 492
  • [45] Generative Adversarial Network for Segmentation of Motion Affected Neonatal Brain MRI
    Khalili, N.
    Turk, E.
    Zreik, M.
    Viergever, M. A.
    Benders, M. J. N. L.
    Isgum, I.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 : 320 - 328
  • [46] Automatic segmentation for neonatal phonocardiogram
    Gomez-Quintana, Sergi
    Shelevytsky, Ihor
    Shelevytska, Victoriya
    Popovici, Emanuel
    Temko, Andriy
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 135 - 138
  • [47] Comprehensive analysis of synthetic learning applied to neonatal brain MRI segmentation
    Valabregue, R.
    Girka, F.
    Pron, A.
    Rousseau, F.
    Auzias, G.
    HUMAN BRAIN MAPPING, 2024, 45 (06)
  • [48] A pyramidal approach for automatic segmentation of multiple sclerosis lesions in brain MRI
    Pachai, C
    Zhu, YM
    Grimaud, J
    Hermier, M
    Dromigny-Badin, A
    Boudraa, A
    Gimenez, G
    Confavreux, C
    Froment, JC
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 1998, 22 (05) : 399 - 408
  • [49] Accurate Automatic Glioma Segmentation in Brain MRI images Based on CapsNet
    Aziz, M. Jalili
    Zade, A. Amiri Tehrani
    Farnia, P.
    Alimohamadi, M.
    Makkiabadi, B.
    Ahmadian, A.
    Alirezaie, J.
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3882 - 3885
  • [50] Segmentation of MRI brain images for automatic detection and precise localization of tumor
    Boberek M.
    Saeed K.
    Advances in Intelligent and Soft Computing, 2011, 102 : 333 - 341