Constructive Approximation on Graded Meshes for the Integral Fractional Laplacian

被引:4
|
作者
Borthagaray, Juan Pablo [1 ,2 ]
Nochetto, Ricardo H. [3 ]
机构
[1] Univ Republ, Dept Matemat & Estadist Litoral, Salto, Uruguay
[2] Univ Republica, Ctr Matemat, Montevideo, Uruguay
[3] Univ Maryland, Inst Phys Sci & Technol, Dept Math, College Pk, MD 20742 USA
关键词
integral fractional Laplacian; graded Meshes; greedy algorithm; ARONSZAJN-SLOBODECKIJ NORM; BOUNDARY-ELEMENT METHODS; ELLIPTIC PROBLEMS; NUMERICAL-METHODS; REGULARITY; INTERPOLATION; LOCALIZATION; DOMAINS;
D O I
10.1007/s00365-023-09617-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the homogeneous Dirichlet problem for the integral fractional Laplacian (-delta)(s). We prove optimal Sobolev regularity estimates in Lipschitz domains pro-vided the solution is C-s up to the boundary. We present the construction of graded bisection meshes by a greedy algorithm and derive quasi-optimal convergence rates for approximations to the solution of such a problem by continuous piecewise linear functions. The nonlinear Sobolev scale dictates the relation between regularity and approximability.
引用
收藏
页码:463 / 487
页数:25
相关论文
共 50 条
  • [41] Finite Element Method on locally refined composite meshes for Dirichlet fractional Laplacian
    Zhou, Jun
    Chen, Hongbin
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 82
  • [42] Two-Level Error Estimation for the Integral Fractional Laplacian
    Faustmann, Markus
    Stephan, Ernst P. P.
    Woergoetter, David
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (03) : 603 - 621
  • [43] Approximating and Preconditioning the Stiffness Matrix in the GoFD Approximation of the Fractional Laplacian
    Huang, Weizhang
    Shen, Jinye
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2025, 37 (01) : 1 - 29
  • [44] A PRIORI ERROR ESTIMATES FOR THE OPTIMAL CONTROL OF THE INTEGRAL FRACTIONAL LAPLACIAN
    D'elia, Marta
    Glusa, Christian
    Otarola, Enrique
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (04) : 2775 - 2798
  • [45] Numerical approximation of the fractional Laplacian on R using orthogonal families
    Cayama, Jorge
    Cuesta, Carlota M.
    de la Hoz, Francisco
    APPLIED NUMERICAL MATHEMATICS, 2020, 158 : 164 - 193
  • [46] Collocation methods for integral fractional Laplacian and fractional PDEs based on radial basis functions
    Zhuang, Qiao
    Heryudono, Alfa
    Zeng, Fanhai
    Zhang, Zhongqiang
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 469
  • [47] On graded meshes for weakly singular Volterra integral equations with oscillatory trigonometric kernels
    Wu, Qinghua
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 263 : 370 - 376
  • [48] Introducing Graded Meshes in the Numerical Approximation of Distributed-order Diffusion Equations
    Morgado, M. L.
    Rebelo, M.
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA-2016), 2016, 1776
  • [49] An Improved Approximation of Grunwald-Letnikov Fractional Integral
    AbdAlRahman, Alaa
    Abdelaty, Amr
    Soltan, Ahmed
    Radwan, Ahmed G.
    2021 10TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2021,
  • [50] On Approximation Properties of Fractional Integral for A-Fractal Function
    Priyanka, T. M. C.
    Valarmathi, R.
    Bingi, Kishore
    Gowrisankar, A.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022