Constructive Approximation on Graded Meshes for the Integral Fractional Laplacian

被引:4
|
作者
Borthagaray, Juan Pablo [1 ,2 ]
Nochetto, Ricardo H. [3 ]
机构
[1] Univ Republ, Dept Matemat & Estadist Litoral, Salto, Uruguay
[2] Univ Republica, Ctr Matemat, Montevideo, Uruguay
[3] Univ Maryland, Inst Phys Sci & Technol, Dept Math, College Pk, MD 20742 USA
关键词
integral fractional Laplacian; graded Meshes; greedy algorithm; ARONSZAJN-SLOBODECKIJ NORM; BOUNDARY-ELEMENT METHODS; ELLIPTIC PROBLEMS; NUMERICAL-METHODS; REGULARITY; INTERPOLATION; LOCALIZATION; DOMAINS;
D O I
10.1007/s00365-023-09617-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the homogeneous Dirichlet problem for the integral fractional Laplacian (-delta)(s). We prove optimal Sobolev regularity estimates in Lipschitz domains pro-vided the solution is C-s up to the boundary. We present the construction of graded bisection meshes by a greedy algorithm and derive quasi-optimal convergence rates for approximations to the solution of such a problem by continuous piecewise linear functions. The nonlinear Sobolev scale dictates the relation between regularity and approximability.
引用
收藏
页码:463 / 487
页数:25
相关论文
共 50 条
  • [21] Approximation of solutions to fractional integral equation
    Muslim, M.
    Conca, Carlos
    Nandakumaran, A. K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) : 1236 - 1244
  • [22] Spectral Galerkin Approximation of Fractional Optimal Control Problems with Fractional Laplacian
    Zhang, Jiaqi
    Yang, Yin
    Zhou, Zhaojie
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2023, 15 (06) : 1631 - 1654
  • [23] Detailed error analysis for a fractional Adams method with graded meshes
    Liu, Yanzhi
    Roberts, Jason
    Yan, Yubin
    NUMERICAL ALGORITHMS, 2018, 78 (04) : 1195 - 1216
  • [24] Weighted analytic regularity for the integral fractional Laplacian in polyhedra
    Faustmann, Markus
    Marcati, Carlo
    Melenk, Jens Markus
    Schwab, Christoph
    ANALYSIS AND APPLICATIONS, 2025,
  • [25] Adaptive finite element approximation of optimal control problems with the integral fractional Laplacian (vol 49, 59, 2023)
    Zhou, Zhaojie
    Wang, Qiming
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (05)
  • [26] WEIGHTED ANALYTIC REGULARITY FOR THE INTEGRAL FRACTIONAL LAPLACIAN IN POLYGONS
    Faustmann, Markus
    Marcati, Carlo
    Melenk, Jens Markus
    Schwab, Christoph
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (06) : 6323 - 6357
  • [27] On the biquadratic approximation of fractional-order Laplacian operators
    Reyad El-Khazali
    Analog Integrated Circuits and Signal Processing, 2015, 82 : 503 - 517
  • [28] On a nonlinear parabolic equation with fractional Laplacian and integral conditions
    Tuan, Nguyen Huy
    Tri, Vo Viet
    O'Regan, Donal
    APPLICABLE ANALYSIS, 2022, 101 (17) : 5974 - 5988
  • [29] On the biquadratic approximation of fractional-order Laplacian operators
    El-Khazali, Reyad
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2015, 82 (03) : 503 - 517
  • [30] Biquadratic Approximation of Fractional-Order Laplacian Operators
    El-Khazali, Reyad
    2013 IEEE 56TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2013, : 69 - 72