Constructive Approximation on Graded Meshes for the Integral Fractional Laplacian

被引:4
|
作者
Borthagaray, Juan Pablo [1 ,2 ]
Nochetto, Ricardo H. [3 ]
机构
[1] Univ Republ, Dept Matemat & Estadist Litoral, Salto, Uruguay
[2] Univ Republica, Ctr Matemat, Montevideo, Uruguay
[3] Univ Maryland, Inst Phys Sci & Technol, Dept Math, College Pk, MD 20742 USA
关键词
integral fractional Laplacian; graded Meshes; greedy algorithm; ARONSZAJN-SLOBODECKIJ NORM; BOUNDARY-ELEMENT METHODS; ELLIPTIC PROBLEMS; NUMERICAL-METHODS; REGULARITY; INTERPOLATION; LOCALIZATION; DOMAINS;
D O I
10.1007/s00365-023-09617-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the homogeneous Dirichlet problem for the integral fractional Laplacian (-delta)(s). We prove optimal Sobolev regularity estimates in Lipschitz domains pro-vided the solution is C-s up to the boundary. We present the construction of graded bisection meshes by a greedy algorithm and derive quasi-optimal convergence rates for approximations to the solution of such a problem by continuous piecewise linear functions. The nonlinear Sobolev scale dictates the relation between regularity and approximability.
引用
收藏
页码:463 / 487
页数:25
相关论文
共 50 条
  • [1] Constructive Approximation on Graded Meshes for the Integral Fractional Laplacian
    Juan Pablo Borthagaray
    Ricardo H. Nochetto
    Constructive Approximation, 2023, 57 : 463 - 487
  • [2] Numerical approximation of the integral fractional Laplacian
    Bonito, Andrea
    Lei, Wenyu
    Pasciak, Joseph E.
    NUMERISCHE MATHEMATIK, 2019, 142 (02) : 235 - 278
  • [3] Numerical approximation of the integral fractional Laplacian
    Andrea Bonito
    Wenyu Lei
    Joseph E. Pasciak
    Numerische Mathematik, 2019, 142 : 235 - 278
  • [4] Fast Implementation of FEM for Integral Fractional Laplacian on Rectangular Meshes
    Sheng, Changtao
    Wang, Li-Lian
    Chen, Hongbin
    Li, Huiyuan
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2024, 36 (03) : 673 - 710
  • [5] Error analysis of a collocation method on graded meshes for a fractional Laplacian problem
    Chen, Minghua
    Deng, Weihua
    Min, Chao
    Shi, Jiankang
    Stynes, Martin
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (03)
  • [6] Spectral approximation for nonlinear time fractional Schrodinger equation on graded meshes
    Chen, Li
    Lu, Shujuan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (12) : 2524 - 2541
  • [7] APPROXIMATION OF INTEGRAL FRACTIONAL LAPLACIAN AND FRACTIONAL PDES VIA SINC-BASIS
    Antil, Harbir
    Dondl, Patrick
    Striet, Ludwig
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (04): : A2897 - A2922
  • [8] Adaptive finite element approximation of optimal control problems with the integral fractional Laplacian
    Zhou, Zhaojie
    Wang, Qiming
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (04)
  • [9] Weighted Sobolev regularity and rate of approximation of the obstacle problem for the integral fractional Laplacian
    Borthagaray, Juan Pablo
    Nochetto, Ricardo H.
    Salgado, Abner J.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (14): : 2679 - 2717
  • [10] Adaptive finite element approximation of optimal control problems with the integral fractional Laplacian
    Zhaojie Zhou
    Qiming Wang
    Advances in Computational Mathematics, 2023, 49