Self-Normalized Cramer-Type Moderate Deviations for Explosive Vasicek Model

被引:0
|
作者
Jiang, Hui [1 ]
Pan, Yajuan [1 ]
Wei, Xiao [2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing, Peoples R China
[2] Cent Univ Finance & Econ, China Inst Actuarial Sci, Beijing, Peoples R China
[3] Cent Univ Finance & Econ, Sch Insurance, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Cramer-type moderate deviation; Deviation inequalities; Explosive Vasicek model; Multiple Wiener-Ito integrals; Self-normalized; ORNSTEIN-UHLENBECK PROCESS; BERRY-ESSEEN BOUNDS; SHARP LARGE DEVIATIONS; PARAMETER-ESTIMATION; (CO-)VOLATILITY VECTOR; LONG-MEMORY; ESTIMATOR; INEQUALITIES;
D O I
10.1007/s10959-023-01264-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By deviation inequalities for multiple Wiener-Ito integrals, we study the deviation inequalities for some quadratic functionals in the explosive Vasicek model. Then, self-normalized Cramer-type moderate deviations and joint moderate deviations for the maximum likelihood estimators are obtained via asymptotic analysis techniques.
引用
收藏
页码:228 / 250
页数:23
相关论文
共 50 条
  • [21] Self-normalized moderate deviations for independent random variables
    JING BingYi 1
    2 Department of Mathematics
    3 Department of Statistics and Applied Probability
    Science China Mathematics, 2012, 55 (11) : 2297 - 2315
  • [22] Self-normalized moderate deviations for independent random variables
    Jing BingYi
    Liang HanYing
    Zhou Wang
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (11) : 2297 - 2315
  • [23] Cramer-type moderate deviations for stationary sequences of bounded random variables
    Fan, Xiequan
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (05) : 463 - 477
  • [24] Moderate deviations for the self-normalized random walk in random scenery
    Peretz, Tal
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [25] Self-normalized Moderate Deviations for Random Walk in Random Scenery
    Feng, Xinwei
    Shao, Qi-Man
    Zeitouni, Ofer
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (01) : 103 - 124
  • [26] Self-normalized Moderate Deviations for Random Walk in Random Scenery
    Xinwei Feng
    Qi-Man Shao
    Ofer Zeitouni
    Journal of Theoretical Probability, 2021, 34 : 103 - 124
  • [27] Self-normalized Cramér-type Moderate Deviations for Functionals of Markov Chain
    Xin-wei Feng
    Qi-Man Shao
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 294 - 313
  • [28] Self-normalized Cramér-type Moderate Deviations for Functionals of Markov Chain
    Xin-wei FENG
    Qi-Man SHAO
    Acta Mathematicae Applicatae Sinica, 2020, 36 (02) : 294 - 313
  • [29] Self-normalized large deviations
    Shao, QM
    ANNALS OF PROBABILITY, 1997, 25 (01): : 285 - 328
  • [30] Normalized and self-normalized Cramér-type moderate deviations for the Euler-Maruyama scheme for the SDE
    Xiequan Fan
    Haijuan Hu
    Lihu Xu
    Science China(Mathematics), 2024, 67 (08) : 1865 - 1880