Self-Normalized Cramer-Type Moderate Deviations for Explosive Vasicek Model

被引:0
|
作者
Jiang, Hui [1 ]
Pan, Yajuan [1 ]
Wei, Xiao [2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing, Peoples R China
[2] Cent Univ Finance & Econ, China Inst Actuarial Sci, Beijing, Peoples R China
[3] Cent Univ Finance & Econ, Sch Insurance, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Cramer-type moderate deviation; Deviation inequalities; Explosive Vasicek model; Multiple Wiener-Ito integrals; Self-normalized; ORNSTEIN-UHLENBECK PROCESS; BERRY-ESSEEN BOUNDS; SHARP LARGE DEVIATIONS; PARAMETER-ESTIMATION; (CO-)VOLATILITY VECTOR; LONG-MEMORY; ESTIMATOR; INEQUALITIES;
D O I
10.1007/s10959-023-01264-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By deviation inequalities for multiple Wiener-Ito integrals, we study the deviation inequalities for some quadratic functionals in the explosive Vasicek model. Then, self-normalized Cramer-type moderate deviations and joint moderate deviations for the maximum likelihood estimators are obtained via asymptotic analysis techniques.
引用
收藏
页码:228 / 250
页数:23
相关论文
共 50 条
  • [11] Self-normalized Cramer type moderate deviations for stationary sequences and applications
    Fan, Xiequan
    Grama, Ion
    Liu, Quansheng
    Shao, Qi-Man
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (08) : 5124 - 5148
  • [12] Deviation inequalities and Cramer-type moderate deviations for the explosive autoregressive process
    Jiang, Hui
    Wan, Yilong
    Yang, Guangyu
    BERNOULLI, 2022, 28 (04) : 2634 - 2662
  • [13] Central limit theorem and self-normalized Cramer-type moderate deviation for Euler-Maruyama scheme
    Lu, Jianya
    Tan, Yuzhen
    Xu, Lihu
    BERNOULLI, 2022, 28 (02) : 937 - 964
  • [14] Self-normalized moderate deviations and lils
    Dembo, A
    Shao, QM
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 75 (01) : 51 - 65
  • [15] Self-normalized Cramer moderate deviations for a supercritical Galton-Watson process
    Fan, Xiequan
    Shao, Qi-Man
    JOURNAL OF APPLIED PROBABILITY, 2023, 60 (04) : 1281 - 1292
  • [16] Cramer type moderate deviation theorems for self-normalized processes
    Shao, Qi-Man
    Zhou, Wen-Xin
    BERNOULLI, 2016, 22 (04) : 2029 - 2079
  • [17] Cramer-type moderate deviations for intermediate trimmed means
    Gribkova, Nadezhda
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (23) : 11918 - 11932
  • [18] Moderate deviations principles for self-normalized martingales
    Worms, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (10): : 909 - 914
  • [19] REFINED CRAMER-TYPE MODERATE DEVIATION THEOREMS FOR GENERAL SELF-NORMALIZED SUMS WITH APPLICATIONS TO DEPENDENT RANDOM VARIABLES AND WINSORIZED MEAN
    Gao, Lan
    Shao, Qi-Man
    Shi, Jiasheng
    ANNALS OF STATISTICS, 2022, 50 (02): : 673 - 697
  • [20] Self-normalized moderate deviations for independent random variables
    BingYi Jing
    HanYing Liang
    Wang Zhou
    Science China Mathematics, 2012, 55 : 2297 - 2315