Self-Normalized Cramer-Type Moderate Deviations for Explosive Vasicek Model

被引:0
|
作者
Jiang, Hui [1 ]
Pan, Yajuan [1 ]
Wei, Xiao [2 ,3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing, Peoples R China
[2] Cent Univ Finance & Econ, China Inst Actuarial Sci, Beijing, Peoples R China
[3] Cent Univ Finance & Econ, Sch Insurance, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Cramer-type moderate deviation; Deviation inequalities; Explosive Vasicek model; Multiple Wiener-Ito integrals; Self-normalized; ORNSTEIN-UHLENBECK PROCESS; BERRY-ESSEEN BOUNDS; SHARP LARGE DEVIATIONS; PARAMETER-ESTIMATION; (CO-)VOLATILITY VECTOR; LONG-MEMORY; ESTIMATOR; INEQUALITIES;
D O I
10.1007/s10959-023-01264-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By deviation inequalities for multiple Wiener-Ito integrals, we study the deviation inequalities for some quadratic functionals in the explosive Vasicek model. Then, self-normalized Cramer-type moderate deviations and joint moderate deviations for the maximum likelihood estimators are obtained via asymptotic analysis techniques.
引用
收藏
页码:228 / 250
页数:23
相关论文
共 50 条
  • [1] SELF-NORMALIZED CRAMER-TYPE MODERATE DEVIATIONS UNDER DEPENDENCE
    Chen, Xiaohong
    Shao, Qi-Man
    Wu, Wei Biao
    Xu, Lihu
    ANNALS OF STATISTICS, 2016, 44 (04): : 1593 - 1617
  • [2] FURTHER REFINEMENT OF SELF-NORMALIZED CRAMER-TYPE MODERATE DEVIATIONS
    Sang, Hailin
    Ge, Lin
    ESAIM-PROBABILITY AND STATISTICS, 2017, 21 : 201 - 219
  • [3] Self-normalized Cramer-type Moderate Deviations for Functionals of Markov Chain
    Feng, Xin-wei
    Shao, Qi-Man
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (02): : 294 - 313
  • [4] Self-Normalized Cramér-Type Moderate Deviations for Explosive Vasicek Model
    Hui Jiang
    Yajuan Pan
    Xiao Wei
    Journal of Theoretical Probability, 2024, 37 : 228 - 250
  • [5] Self-normalized Cramer type moderate deviations for martingales
    Fan, Xiequan
    Grama, Ion
    Liu, Quansheng
    Shao, Qi-Man
    BERNOULLI, 2019, 25 (4A) : 2793 - 2823
  • [6] Self-normalized Cramer-type large deviations for independent random variables
    Jing, BY
    Shao, QM
    Wang, QY
    ANNALS OF PROBABILITY, 2003, 31 (04): : 2167 - 2215
  • [7] Cramer Type Moderate deviations for the Maximum of Self-normalized Sums
    Hu, Zhishui
    Shao, Qi-Man
    Wang, Qiying
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 1181 - 1197
  • [8] On the self-normalized Cramer-type large deviation
    Robinson, J
    Wang, QY
    JOURNAL OF THEORETICAL PROBABILITY, 2005, 18 (04) : 891 - 909
  • [9] Self-normalized Cramer type moderate deviations for the maximum of sums
    Liu, Weidong
    Shao, Qi-Man
    Wang, Qiying
    BERNOULLI, 2013, 19 (03) : 1006 - 1027
  • [10] Cramer type moderate deviations for self-normalized ψ-mixing sequences
    Fan, Xiequan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (02)