Numerical investigation of multiphase flow effects on mixed convection in partially heated hybrid nanofluid-filled cavity

被引:2
|
作者
Shahid, Muhammad Ashhad [1 ,2 ]
Dayer, Mojtaba [3 ]
Hashim, Ishak [1 ,5 ]
Alsabery, Ammar I. [4 ]
Momani, Shaher [5 ,6 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Bangi 43600, Selangor, Malaysia
[2] DHA Suffa Univ, Dept Basic Sci, Karachi 75500, Sindh, Pakistan
[3] Univ Kebangsaan Malaysia, Solar Energy Res Inst, Bangi 43600, Selangor, Malaysia
[4] Islamic Univ, Refrigerat & Air Conditioning Tech Engn Dept, Najaf 540011, Iraq
[5] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, POB 346, Ajman, U Arab Emirates
[6] Univ Jordan, Fac Sci, Dept Math, Amman 11942, Jordan
关键词
Hybrid nanofluid; Mixed convection; Multiphase flow; Inner rotating cylinder; Partially heated wall; THERMAL-CONDUCTIVITY; NATURAL-CONVECTION; ROTATING CYLINDER;
D O I
10.1007/s10973-023-12860-4
中图分类号
O414.1 [热力学];
学科分类号
摘要
The integration of cavities designed with distinct specifications enhances the convective heat transfer, leads to improved performance of engineering systems. The current research focuses on numerical investigation of mixed convection within the cavity, which features a partially heated wall and a rotating cylinder. The cavity is filled with hybrid nanofluid comprising Al2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document} and Cu nanoparticles suspended in water, serving as base fluid. The dimensionless governing equations were derived with a novel transformation of parameters along with consideration of the two-phase Buongiorno model. The input parameters examined included the Rayleigh number (103 <= Ra <= 106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>3 \le \text{Ra} \le 10<^>6$$\end{document}), the dimensionless radius of the cylinder (0.1 <= R <= 0.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1 \le R \le 0.4$$\end{document}), the angular rotational velocity of the cylinder (0 <=omega <= 600\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le \Omega \le 600$$\end{document}), the concentration of nanoparticles (0.02 <=phi <= 0.05\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.02 \le \phi \le 0.05$$\end{document}), and the dimensionless length of partially heated wall. Utilizing COMSOL Multiphysics as a simulation platform, Galerkin's Weighted Residual Method is used to solve the governing equations. The impact of varying parameters is analyzed through the visualization of streamlines, dimensionless temperature with isothermal lines, normalized solid volume fraction, and their influence on both local and average Nusselt numbers. The observed results indicate an indirect relationship between average Nusselt number and the length of the partially heated wall. Moreover, the careful consideration of the varying parameters discussed leads to improved heat transfer performance of the hybrid nanofluid in the cavity. The highest value of Nusselt number attained is 8.9456 at phi hnf=0.05\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _{\rm{hnf}}=0. 05$$\end{document}, omega=250\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega =250$$\end{document} and R=0.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=0.2$$\end{document}, underscoring a notable achievement that surpasses the values reported in previous works. The findings of this study offer valuable implications for optimizing convective heat transfer in applications, such as heat exchangers and electronic cooling systems.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Computational study of magnetohydrodynamic mixed convective flow in a nanofluid-filled cavity with diagonally moving lid
    Begum, A. Shamadhani
    Sarhan, Nadia M.
    Shomurotova, Shirin
    Khan, M. Ijaz
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2024,
  • [42] Thermal and flow dynamics of unsteady MHD nanofluid convection in a partially heated porous cavity
    Vigneshwari, S.
    Reddappa, B.
    Sumithra, A.
    Kumar, B. Rushi
    Oztop, Hakan F.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2025,
  • [43] MHD mixed convection of nanofluid filled partially heated triangular enclosure with a rotating adiabatic cylinder
    Selimefendigil, Fatih
    Oztop, Hakan F.
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2014, 45 (05) : 2150 - 2162
  • [44] Natural convection from heated fin shapes in a nanofluid-filled porous cavity using incompressible smoothed particle hydrodynamics
    Aly, Abdelraheem M.
    Raizah, Zehba
    Asai, Mitsuteru
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2019, 29 (12) : 4569 - 4597
  • [45] Numerical study of heat-flux boundary in nanofluid-filled cavity
    Kosti, Siddhartha
    NANOMATERIALS AND ENERGY, 2014, 3 (06) : 193 - 205
  • [46] Heat transfer and fluid flow of nanofluid-filled enclosure with two partially heated side walls and different nanoparticles
    Jmai, Ridha
    Ben-Beya, Brahim
    Lili, Taieb
    SUPERLATTICES AND MICROSTRUCTURES, 2013, 53 : 130 - 154
  • [47] Mixed convection in a square cavity filled with CuO-water nanofluid heated by corner heater
    Ismael, Muneer A.
    Abu-Nada, Eiyad
    Chamkha, Ali J.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2017, 133 : 42 - 50
  • [48] Natural convection of CuO–water nanofluid filled in a partially heated corrugated cavity:KKL model approach
    Rizwan Ul Haq
    Muhammad Usman
    Ebrahem A Algehyne
    Communications in Theoretical Physics, 2020, 72 (08) : 29 - 44
  • [49] EXPERIMENTAL AND NUMERICAL INVESTIGATION ON MIXED CONVECTION IN HORIZONTAL CHANNELS PARTIALLY FILLED WITH ALUMINUM FOAM AND HEATED FROM BELOW
    Buonomo, Bernardo
    Cirillo, Luca
    Manca, Oronzio
    Nardini, Sergio
    PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, 2016, VOL 1, 2016,
  • [50] Numerical investigation and optimization of mixed convection in ventilated square cavity filled with nanofluid of different inlet and outlet port
    Shirvan, Kamel Milani
    Mamourian, Mojtaba
    Ellahi, R.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2017, 27 (09) : 2053 - 2069