Numerical investigation of multiphase flow effects on mixed convection in partially heated hybrid nanofluid-filled cavity

被引:2
|
作者
Shahid, Muhammad Ashhad [1 ,2 ]
Dayer, Mojtaba [3 ]
Hashim, Ishak [1 ,5 ]
Alsabery, Ammar I. [4 ]
Momani, Shaher [5 ,6 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Bangi 43600, Selangor, Malaysia
[2] DHA Suffa Univ, Dept Basic Sci, Karachi 75500, Sindh, Pakistan
[3] Univ Kebangsaan Malaysia, Solar Energy Res Inst, Bangi 43600, Selangor, Malaysia
[4] Islamic Univ, Refrigerat & Air Conditioning Tech Engn Dept, Najaf 540011, Iraq
[5] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, POB 346, Ajman, U Arab Emirates
[6] Univ Jordan, Fac Sci, Dept Math, Amman 11942, Jordan
关键词
Hybrid nanofluid; Mixed convection; Multiphase flow; Inner rotating cylinder; Partially heated wall; THERMAL-CONDUCTIVITY; NATURAL-CONVECTION; ROTATING CYLINDER;
D O I
10.1007/s10973-023-12860-4
中图分类号
O414.1 [热力学];
学科分类号
摘要
The integration of cavities designed with distinct specifications enhances the convective heat transfer, leads to improved performance of engineering systems. The current research focuses on numerical investigation of mixed convection within the cavity, which features a partially heated wall and a rotating cylinder. The cavity is filled with hybrid nanofluid comprising Al2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document} and Cu nanoparticles suspended in water, serving as base fluid. The dimensionless governing equations were derived with a novel transformation of parameters along with consideration of the two-phase Buongiorno model. The input parameters examined included the Rayleigh number (103 <= Ra <= 106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>3 \le \text{Ra} \le 10<^>6$$\end{document}), the dimensionless radius of the cylinder (0.1 <= R <= 0.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1 \le R \le 0.4$$\end{document}), the angular rotational velocity of the cylinder (0 <=omega <= 600\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le \Omega \le 600$$\end{document}), the concentration of nanoparticles (0.02 <=phi <= 0.05\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.02 \le \phi \le 0.05$$\end{document}), and the dimensionless length of partially heated wall. Utilizing COMSOL Multiphysics as a simulation platform, Galerkin's Weighted Residual Method is used to solve the governing equations. The impact of varying parameters is analyzed through the visualization of streamlines, dimensionless temperature with isothermal lines, normalized solid volume fraction, and their influence on both local and average Nusselt numbers. The observed results indicate an indirect relationship between average Nusselt number and the length of the partially heated wall. Moreover, the careful consideration of the varying parameters discussed leads to improved heat transfer performance of the hybrid nanofluid in the cavity. The highest value of Nusselt number attained is 8.9456 at phi hnf=0.05\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _{\rm{hnf}}=0. 05$$\end{document}, omega=250\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega =250$$\end{document} and R=0.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=0.2$$\end{document}, underscoring a notable achievement that surpasses the values reported in previous works. The findings of this study offer valuable implications for optimizing convective heat transfer in applications, such as heat exchangers and electronic cooling systems.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Numerical Investigation of the Entropy Generation Due to Natural Convection in a Partially Heated Square Cavity Filled With Nanofluids
    Mohammadtabar, Mohammad
    Mohammadtabar, Farshad
    Shokri, Rouholluh
    Sadrzadeh, Mohtada
    HEAT TRANSFER ENGINEERING, 2017, 38 (17) : 1506 - 1521
  • [22] Natural convection investigation under influence of internal bodies within a nanofluid-filled square cavity
    Ahmed Dhafer Abdulsahib
    Atheer Saad Hashim
    Khaled Al-Farhany
    Ammar Abdulkadhim
    Fateh Mebarek-Oudina
    The European Physical Journal Special Topics, 2022, 231 : 2605 - 2621
  • [23] Natural convection investigation under influence of internal bodies within a nanofluid-filled square cavity
    Abdulsahib, Ahmed Dhafer
    Hashim, Atheer Saad
    Al-Farhany, Khaled
    Abdulkadhim, Ammar
    Mebarek-Oudina, Fateh
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2022, 231 (13-14): : 2605 - 2621
  • [24] MIXED CONVECTION AND ENTROPY GENERATION IN A LID-DRIVEN CAVITY FILLED WITH A HYBRID NANOFLUID AND HEATED BY A TRIANGULAR SOLID
    Ismael, Muneer A.
    Armaghani, T.
    Chamkha, Ali J.
    HEAT TRANSFER RESEARCH, 2018, 49 (17) : 1645 - 1665
  • [25] NATURAL CONVECTION OF A HYBRID NANOFLUID-FILLED TRIANGULAR ANNULUS WITH AN OPENING
    Selimefendigil, Fatih
    Chamhka, Ali J.
    COMPUTATIONAL THERMAL SCIENCES, 2016, 8 (06): : 555 - 566
  • [26] Free convection in a partially heated wavy porous cavity filled with a nanofluid under the effects of Brownian diffusion and thermophoresis
    Sheremet, M. A.
    Cimpean, D. S.
    Pop, I.
    APPLIED THERMAL ENGINEERING, 2017, 113 : 413 - 418
  • [27] Mixed convection of MHD flow in nanofluid filled and partially heated wavy walled lid-driven enclosure
    Oztop, Hakan F.
    Sakhrieh, Ahmad
    Abu-Nadad, Eiyad
    Al-Salem, Khaled
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2017, 86 : 42 - 51
  • [28] MHD natural convection in a nanofluid-filled cavity with linear temperature distribution
    Mahmoudi, Ahmed
    Mejri, Imen
    AmmarAbbassi, Mohamed
    Omri, Ahmed
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2014, 14 (4-5) : 291 - 313
  • [29] Convection in Nanofluid-Filled Porous Cavity with Heat Absorption/Generation and Radiation
    Sekhar, B. Chandra
    Kishan, N.
    Haritha, C.
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2017, 31 (03) : 549 - 562
  • [30] Magnetohydrodynamics mixed convection in a power law nanofluid-filled triangular cavity with an opening using Tiwari and Das’ nanofluid model
    Fatih Selimefendigil
    Ali J. Chamkha
    Journal of Thermal Analysis and Calorimetry, 2019, 135 : 419 - 436